Курсовая работа: Принципы организации параллелизма выполнения машинных команд в процессорах

Конфликты по управлению возникают при конвейеризации команд переходов и других команд, изменяющих значение счетчика команд.

Суть конфликтов этой группы наиболее удобно проиллюстрировать на примере команд условного перехода. Пусть в программе, представленной в таблице 2.1, команда i+1 является командой условного перехода, формирующей адрес следующей команды в зависимости от результата выполнения команды i. Команда i завершит свое выполнение в такте 5. В то же время команда условного перехода уже в такте 3 должна прочитать необходимые ей признаки, чтобы правильно сформировать адрес следующей команды. Если конвейер имеет большую глубину (например, 20 ступеней), то промежуток времени между формированием признака результата и тактом, где он анализируется, может быть еще большим. В инженерных задачах примерно каждая шестая команда является командой условного перехода, поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора.

Наиболее эффективным методом снижения потерь от конфликтов по управлению служит предсказание переходов. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок процессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется. Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы (так называемое исполнение по предположению, или "спекулятивное" исполнение). Однако так как направление перехода может быть предсказано неверно, то получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры (то есть для них не выполняется этап WB), а накапливаются в специальном буфере результатов.

В современных процессорах вероятность правильного предсказания направления переходов достигает 90% [6,11].

Конфликты по данным возникают в случаях, когда выполнение одной команды зависит от результата выполнения предыдущей команды. При обсуждении этих конфликтов будем предполагать, что команда i предшествует команде j[11].

Все виды зависимостей по данным могут быть классифицированы по типу ассо­циаций: RAR — «чтение после чтения», WAR — «запись после чтения» и WAW — «запись после записи», RAW — «чтение после записи».

Некоторые из зависимостей по данным могут быть устранены. RAR, по сути дела, соответствует отсутствию зависимости, поскольку в данном случае порядок выполнения команд не имеет значения. Действительной зависимостью является только «чтение после записи» (RAW), так как необходимо прочитать предварительно записанные новые данные, а не старые.

Лишние зависимости по данным появляются в результате «записи после чтения» (WAR) и «записи после записи» (WAW). Лишние зависимости появляются по нескольким при­чинам: не оптимизированный программный код, ограничение количества регистров, стремление к экономии памяти, наличие программных циклов. Важно отметить, что запись может быть произведена в любой свободный ресурс, а не только тот, который указан в программе[1].

1. Конфликты типа RAW (Read After Write): команда j пытается прочитать операнд прежде, чем команда i запишет на это место свой результат. При этом команда j может получить некорректное старое значение операнда.

Проиллюстрируем этот тип конфликта на примере выполнения команд, представленных в таблице 2.1. Пусть выполняемые команды имеют следующий вид:

i ADD R1,R2 R1 = R1+R2
i+1=j SUB R3,R1 R3 = R3-R1

Команда i изменит состояние регистра R1 в такте 5. Но команда i+1 должна прочитать значение операнда R1 в такте 4. Если не приняты специальные меры, то из регистра R1 будет прочитано значение, которое было в нем до выполнения команды i.

Уменьшение влияния конфликта типа RAW обеспечивается методом обхода (продвижения) данных. В этом случае результаты, полученные на выходах исполнительных устройств, помимо входов приемника результата передаются также на входы всех исполнительных устройств процессора. Если устройство управления обнаруживает, что данный результат требуется одной из последующих команд в качестве операнда, то он сразу же, параллельно с записью в приемник результата, передается на вход исполнительного устройства для использования следующей командой.

Конфликты типа RAW обусловлены именно конвейерной организацией обработки команд.

Главной причиной двух других типов конфликтов по данным является возможность неупорядоченного выполнения команд в современных роцессорах, то есть выполнение команд не в том порядке, в котором они записаны в программе.

2. Конфликты типа WAR (Write After Read): команда j пытается записать результат в приемник, прежде чем он считается оттуда командой i, При этом команда i может получить некорректное новое значение операнда:

Этот конфликт возникнет в случае, если команда j вследствие неупорядоченного выполнения завершится раньше, чем команда i прочитает старое содержимое регистра R2.

3. Конфликты типа WAW (Write After Write): команда j пытается записать результат в приемник, прежде чем в этот же приемник будет записан результат выполнения команды i, то есть запись заканчивается в неверном порядке, оставляя в приемнике результата значение, записанное командой i:

Устранение конфликтов по данным типов WAR и WAW достигается путем отказа от неупорядоченного исполнения команд, но чаще всего путем введения буфера восстановления последовательности команд.

Как отмечалось выше, наличие конфликтов приводит к значительному снижению производительности процессора. Определенные типы конфликтов требуют приостановки конвейера. При этом останавливается выполнение всех команд, находящихся на различных стадиях обработки. Другие конфликты при неверном предсказанном направлении перехода, ведут к необходимости полной перезагрузки конвейера. Потери будут тем больше, чем более длинный конвейер используется в процессоре. Такая ситуация явилась одной из причин сокращения числа ступеней в процессорах последних моделей [11].

3 Суперскалярные архитектуры

3.1 Работа суперскалярного конвейера

Одна из возможных схем процессора с двумя конвейерами показана на рисунке 3.1. В ее основе лежит конвейер, изображенный на рисунке 2.1. Здесь общий блок выборки команд вызывает из памяти сразу по две команды и помещает каждую из них в один из конвейеров. Каждый конвейер содержит АЛУ для параллельных операций. Чтобы выполняться параллельно, две команды не должны конфликтовать из-за ресурсов (например, регистров), и ни одна из них не должна зависеть от результата выполнения другой. Как и в случае с одним конвейером, либо компилятор должен гарантировать отсутствие нештатных ситуаций (когда, например, аппаратура не обеспечивает проверку команд на несовместимость и при обработке таких команд выдает некорректный результат), либо за счет дополнительной аппаратуры конфликты должны выявляться и устраняться непосредственно в ходе выполнения команд.

Сначала конвейеры (как сдвоенные, так и обычные) использовались только в RISC-компьютерах. У процессора 386 и его предшественников их не было. Конвейеры в процессорах компании Intel появились, только начиная с модели 486. Процессор 486 имел один пятиступенчатый конвейер, a Pentium - два таких конвейера. Похожая схема изображена на рисунке 3.1, но разделение функций между второй и третьей ступенями (они назывались декодер 1 и декодер 2) было другим. Главный конвейер (u-конвейер) мог выполнять произвольные команды. Второй конвейер (v-конвейер) мог выполнять только простые команды с целыми числами, а также одну простую команду с плавающей точкой (FXCH) [2,5].

Имеются сложные правила определения, является ли пара команд совместимой в отношении возможности параллельного выполнения. Если команды, входящие в пару, были сложными или несовместимыми, выполнялась только одна из них (в u-конвейере). Оставшаяся вторая команда составляла затем пару со следующей командой. Команды всегда выполнялись по порядку. Таким образом, процессор Pentium содержал особые компиляторы, которые объединяли совместимые команды в пары и могли порождать программы, выполняющиеся быстрее, чем в предыдущих версиях. Измерения показали, что программы, в которых применяются операции с целыми числами, при той же тактовой частоте на Pentium выполняются почти в два раза быстрее, чем на 486. Вне всяких сомнений, преимущество в скорости было достигнуто благодаря второму конвейеру.

Стоит отметить, что переход к четырем конвейерам возможен, но требует громоздкого аппаратного обеспечения. Вместо этого используется другой подход. Основная идея - один конвейер с большим количеством функциональных блоков, как показано на рисунке 3.2. Pentium II, к примеру, имеет сходную структуру. В 1987 году для обозначения этого подхода был введен термин суперскалярная архитектура. Однако подобная идея нашла воплощение еще тридцатью годами ранее в компьютере CDC 6600. Этот компьютер вызывал команду из памяти каждые 100 не и помещал ее в один из 10 функциональных блоков для параллельного выполнения. Пока команды выполнялись, центральный процессор вызывал следующую команду.

Со временем значение понятия "суперскалярный" несколько изменилось. Теперь суперскалярными называют процессоры, способные запускать несколько команд зачастую от четырех до шести) за один тактовый цикл. Естественно, чтобы передавать все эти команды, в суперскалярном процессоре должно быть несколько функциональных блоков. Поскольку в процессорах этого типа, как правило, предусматривается один конвейер, его устройство обычно соответствует рисунку 3.2.

В свете такой терминологической динамики на сегодняшний день можно утверждать, что компьютер 6600 не был суперскалярным с технической точки зрения - ведь за один тактовый цикл в нем запускалось не больше одной команды. Однако при этом был достигнут аналогичный результат - команды запускались быстрее, чем выполнялись. На самом деле разница в производительности между ЦП с циклом в 100 не, передающим за этот период по одной команде четырем функциональным блокам, и ЦП с циклом в 400 не, запускающим за это время четыре команды, трудноуловима. В обоих процессорах соблюдается принцип превышения скорости запуска над скоростью управления; при этом рабочая нагрузка распределяется между несколькими функциональными блоками.

Отметим, что на выходе ступени 3 команды появляются значительно быстрее, чем ступень 4 способна их обрабатывать. Если бы на выходе ступени 3 команды появлялись каждые 10 не, а все функциональные блоки делали свою работу также за 10 не, то на ступени 4 всегда функционировал бы только один блок, что сделало бы саму идею конвейера бессмысленной. Как видно из рисунка 3.2, на ступени 4 может быть несколько АЛУ.

Суперскалярные процессоры имеют:

К-во Просмотров: 259
Бесплатно скачать Курсовая работа: Принципы организации параллелизма выполнения машинных команд в процессорах