Курсовая работа: Проект участка очистки сточных вод гальванического производства

· высокая эффективность извлечения дисперсных веществ (гидроксидов и фосфатов тяжелых металлов и кальция, нефтепродуктов, поверхностно-активных и взвешенных веществ);

· высокая производительность (1 м2 оборудования – 4 м3 /ч очищаемой воды);

· отсутствие вторичного загрязнения воды благодаря примению нерастворимых электродов ОРТА;

Рисунок 4. Нерастворимые электроды электрофлотатора


· низкие затраты электроэнергии от 0,5 до 1 кВт·ч/м3 ;

· отсутствие заменяемых материалов (электродов, фильтров, сорбентов и пр.);

· простота эксплуатации, автоматический режим работы не требуют ежегодного ремонта и остановок;

· шлам менее влажный (94–96%), в 3–5 раз легче обезвоживается и может быть использован при изготовлении строительных материалов и / или пигментов для красителей.

Мембранные методы очистки:

1) Обратный осмос

Обратный осмос – мембранный процесс очистки воды, для осуществления которого применяются мембраны с минимальным размером пор, соизмеримым с размером одиночных ионов, благодаря чему из воды удаляются все растворенные ионы и молекулы. Рабочее давление процесса в зависимости от солесодержания раствора составляет от 10 до 70 бар. Наиболее эффективно использование обратного осмоса для очистки воды.

Принцип обратного осмоса

2) Нанофильтрация

Нанофильтрация (НФ) совмещает в себе черты как ультрафильтрации, так и обратного осмоса. В процессе НФ используются заряженные мембраны по размерам пор близкие к ультрафильтрационным, что вызывает разделение как по сферическому (ситовому) механизму, так и по Доннановскому и электростатическому механизмам. В зависимости от типа задерживаемых загрязнений преобладают те или иные эффекты. В частности, для катионов тяжелых металлов, имеющих сильный положительный заряд, отрицательно заряженные мембраны и слой положительно заряженных противоионов вносят решающий вклад в селективность. С помощью НФ удается достигнуть селективности 90–98%, что ниже характерных для обратного осмоса 97–99,5%, однако в ряде случаев такие высокие селективности не являются необходимостью и поэтому выгоднее использовать менее энергоемкий процесс нанофильтрации (рабочее давление в 1,5–2 раза ниже). Нанофильтрация может быть использована для концентрирования растворов, содержащих поливалентные соли благодаря различным плотностям заряда и размерам гидратных оболочек ионов. Влияние заряда важно для выделения соли с помощью нанофильтрации, для которой процесс растворения-диффузии – главные механизмы. Доннановские силы имеют особенно важное значение для разбавленных растворов солей.

3) Ультрафильтрация

Ультрафильтрация это процесс мембранного разделения растворов высокомолекулярных и низкомолекулярных соединений, а также концентрирования и фракционирования высокомолекулярных соединений. Процесс протекает за счет разности давлений до и после мембраны. Установки ультрафильтрации применяются для очистки сточных вод и оборотного водоснабжения предприятий. В отличие от обратного осмоса, ультрафильтрацию применяют для разделения систем, в которых молекулярная масса растворенных компонентов намного больше молекулярной массы растворителя. Например, для водных растворов содержащих органические соединения с молекулярной массой 500 и более. Поскольку осмотические давления высокомолекулярных веществ малы (обычно не более десятых долей МПа), в процессе расчетов движущей силы процесса ультрафильтрации ими, как правило, можно пренебречь. Поэтому ультрафильтрацию проводят при сравнительно невысоких давлениях (0,2 – 1,0 МПа). В установках ультрафильтрации используются половолоконные мембраны из полиэфирсульфона, а также мембраны на основе других полимерных материалов. Установки ультрафильтрации нашли широкое применение в системах водоподготовки и обезжелезивания, очистки сточных вод гальванического производства, текстильного производства, производства ситетических моющих средств. Использование мембранных технологий позволяет осуществлять очистку высокомолекулярных соединений от низкомолекулярных, в частности удаление электролитов, карбамида, лактозы и других веществ из растворов. При помощи установки ультрафильтрации возможно одновременно вести технологические процессы концентрирования и очистки гидроксидов и фосфатов тяжелых металлов, нефтепродуктов, коллоидных частиц. При использовании ультрафильтрации не только повышается его качество очистки сточных вод, но и значительно снижается количество стадий технологического процесса. Применение ультрафильтрации для разделения эмульсий дает большие преимущества: отпадает необходимость в химикатах; достигается высокая степень разделения, позволяющая повторно использовать разделенные фазы; процесс не зависит от стабильности разделяемой эмульсии, а также от рода и концентрации содержащихся в ней эмульгаторов, стабилизаторов и электролитов; нет надобности в подводе тепла, т.е. расход энергии невелик; простота технологической схемы и аппаратуры; компактность установки. При выборе материалов мембраны следует иметь в виду, что наибольший эффект разделения достигается, когда мембрана лиофильна по отношению к внешней фазе и лиофобна – к дисперсной. Широкое применение находит ультрафильтрация и при регенерации моющих составов при подготовке поверхностей металлов под окраску и нанесении гальванических покрытий. Для обработки поверхности используют водные растворы, содержащие кальцинированную соду, фосфаты и эмульгаторы. При этом масла с поверхности металла переходят в ванну, образуя эмульсии типа «масло в воде». Разделение таких эмульсий методом ультрафильтрации позволяет получать фильтрат с содержанием масла не более 2 г/м3 , который используют в обороте, и концентрат с содержанием масла не менее 70%, который может быть направлен на утилизацию или сжигание.

Промышленные фильтровальные установки для очистки сточных вод от тяжелых металлов созданы на основе ионообменных смол с макропористой полистиролыюй матрицей и иминодиуксусными хелатообразующими группами. Ионообменные фильтры предназначены для удаления ионов тяжелых металлов из промышленных стоков. Эти ионы могут быть выделены из растворов, содержащих высокие концентрации одновалентных ионов (как правило, натрия), а также двухвалентные катионы (такие как кальций). Смолы могут работать как в слабокислых, так и в слабоосновных растворах. Фильтры с загрузкой данных смол находят применение в процессах извлечения металлов из руд, стоков гальванических производств и производств печатных плат, различных промышленных рассолов и стоков даже в присутствии щелочноземельных металлов (кальция и магния). Другая важная область применения заключается в рафинировании соляных растворов переходных и благородных металлов, а также в очистке различных органических и неорганических химических продуктов удалением следов тяжелых металлов (обычно из водных растворов).

Химический механизм процесса

Иминодиуксусные функциональные группы в натриевой или водородной формах путем реакции ионного обмена образуют с поливалентными катионами комплексы халатного типа.

Ионообменная реакция


Ионообменные фильтры применяются для извлечения тяжелых металлов из сточных вод и концентрированных растворов. Склонность к комплексообразованию смол с различными катионами соответствует следующему ряду: Сu > Ni > Zn > Со > Cd > Fe(II) > Mn > Са.

Макропористая структура обеспечивает превосходные диффузионные свойства смол, повышая, таким образом, эффективность работы на стадиях истощения и регенерации. Извлечение тяжелых металлов из сточных вод производства печатных плат достигается концентрированием.

Практикуется последующее обессоливание и повторное использование промывных вод в технологическом цикле.

Ионообменные фильтры могут быть использованы для снижения содержания тяжелых металлов до уровня ниже максимально допустимой концентрации, который часто значительно ниже получаемого методом осаждения. Данное оборудование может быть использовано для удаления тяжелых металлов из обессоленных промывных вод гальванического производства в замкнутых циклах оборотного водоснабжения предприятий (безотходная технология).

Промышленный фильтр для гальванического производства

К-во Просмотров: 404
Бесплатно скачать Курсовая работа: Проект участка очистки сточных вод гальванического производства