Курсовая работа: Проект вагона МЧС для проведения аварийно-спасательных работ в метрополитене

Во всех случаях эвакуации пассажиров со станции по эскалатору должен быть обеспечен вентиляционный режим, устраняющий возможность задымления эскалаторов и лестниц.

В настоящее время проблема обеспечения безопасной эвакуации людей при пожаре подвижно­го состава в перегонных тоннелях метрополитена в часы «пик» является нерешенной. Трагическим подтверждением этого является происшедший в 1995 г. пожар в Бакинском метрополитене, который сопровождался массовой гибелью и травмированием людей (погибло 286 чел., более 300 чел. травми­ровано).

В связи с этим были произведены исследования условий обеспечения безопасной эвакуации пасса­жиров при пожаре остановившегося в тоннеле под­вижного состава метрополитена.

Основное условие обеспечения безопасности людей на любом объекте, в соответствии с норма­тивным документом, состоит в том, чтобы эва­куация из него была завершена до момента блоки­рования эвакуационных путей в результате распро­странения на них опасных факторов пожара (ОФП), имеющих для людей предельно допустимые значе­ния.

Требование безопасности формулируется в ви­де выражения:

tэбл

где t э - время эвакуации людей;

τ бл - время от начала пожара до блокирования путей эвакуации.

Время блокирования путей эвакуации определяется временем достижения ОФП критического значения по формуле:

τбл = 0,8τкр

Анализ результатов экспериментов, проведен­ных в Санкт-Петербургском филиале ВНИИПО в течение 1985 - 1992 гг., показал, что при наиболее жесткой динамике развития пожара (пожар в кабине управления) ОФП, определяющим его критическую продолжительность, является температура. Критическое значение температуры (70 °С) может быть определено как по результатам натур­ных экспериментов, так и путем математического моделирования. Однако для зоны пожара, находя­щейся в пределах аварийного вагона, наиболее дос­товерными являются данные, полученные в резуль­тате натурных экспериментов.

На рис. 8 представлены экспериментальные за­висимости времени достижения критических значе­ний температур по длине аварийного вагона на пу­тях эвакуации в тоннеле, полученные при сжигании вагона метрополитена в натурном макете перегон­ного тоннеля.

Анализ данных зависимостей показал, что зона с критическими температурами (возле двери, бли­жайшей к очагу) формируется на 5-й минуте, а ее распространение в проходе на всю длину вагона заканчивается к 13-й минуте, т.е. на всю длину ва­гона эта зона распространяется в течение 8 мин. Средняя скорость распространения зоны с критиче­ским значением опасного фактора пожара составля­ла 1,5 м мин-1 , что совпадает со скоростью распро­странения пожара в вагоне.

Следует отметить, что данный вывод распро­страняется только на участок тоннеля с аварийным вагоном, так как на стыке аварийного и смежного с ним вагона происходит некоторая задержка распро­странения горения, но при этом продолжается рас­пространение ОФП в тоннеле.

В связи с отсутствием экспериментальных дан­ных по распространению горения по подвижному составу в целом, для проведения расчетов темпера­туры была использована квазидвухмерная матема­тическая модель пожара подвижного состава в тон­неле метрополитена, разработанная в филиале ВНИИПО. Обработка результатов расчетов по дан­ной модели позволила определить изменение темпе­ратуры в перегонном тоннеле на уровне рабочей зоны в ходе распространения пожара на 2-й и по­следующие вагоны в зависимости от времени и про­дольной координаты (см. рис. 9).


Рис. 8. Зона распространения критической температуры в тоннеле вдоль аварийного вагона на путях эвакуа­ции. 1 - распространение критической температуры в тоннеле вдоль боковых стенок вагона (термопа­ры 1, 3, 5, 7, 9); 2 - распространение критической температуры в тоннеле в зоне открытых дверей (термопары 2,4,6,8); 3 - место расположение термопары; 4 - номер термопары.

Рис. 9. Изменение температуры в перегонном тоннеле на уровне рабочей зоны при развитом пожаре в сало­не вагона.

1 - температура на стыке аварийного (вагон 1) и смежного (вагон 2) с ним вагона;

2 - температура на стыке 2 и 3 вагонов; 3 - температура на стыке 3 и 4 вагонов;

4 -температура на стыке 4 и 5 вагонов; 5 - температура на стыке 5 и б вагонов;

6 - температура на стыке 6 и 7 вагонов; 7 - температура на стыке 7 и 8 вагонов;

8 - температура за 8 вагоном; 9 - критическое значение температуры.

Таким образом, в результате анализа результа­тов экспериментальных исследований и проведения расчетов было получено распределение критической температуры среды в тоннеле по длине подвижного состава на путях эвакуации пассажиров.

Время эвакуации пасса­жиров определяется, исходя из следующего выра­жения:

tэ = tнэ + tр

где tэ - интервал времени от возникновения пожара до начала эвакуации пассажиров.

В связи с тем, что выходы из подвижного со­става в тоннель и участки движения людей в тонне­ле не соответствуют требованиям, предъявляемым к эвакуационным путям, параметры движения людского потока отличаются нормативных параметров. Поэтому для определения параметров движения людских потоков были проведены экспериментальные исследования процесса вынужденной эвакуации людей из вагонов подвижного состава.

Для оценки влияния условий эвакуации, ава­рийных ситуаций и других факторов на продолжи­тельность эвакуации пассажиров была разработана математическая модель и программа расчета време­ни движения пассажиров из подвижного состава, остановившегося в тоннеле.

В математическую модель были включены данные, полученные в ходе проведения эксперимен­тальных исследований по определению параметров движения пассажиров из остановившегося в тоннеле подвижного состава. Ее отличие от других моделей заключается в том, что скорость движения пассажи­ров определялась с учетом переменной плотности людского потока на участках эвакуационного пути.

Графические зависимости, характеризующие выполнение условия безопасности при пожаре в головной (хвостовой) части восьмивагонного под­вижного состава в перегонном тоннеле метрополи­тена в часы «пик», приведены на рис. 10. При этом была принята максимальная «наполняемость» ваго­на (часы «пик»). Анализ данных, приведенных на рис. 10, показал, что безопасность пассажиров не обеспечивается как при односторонней эвакуации пассажиров по перегонному тоннелю, так и при двусторонней. При односторонней эвакуации усло­вие безопасности не выполнялось в зоне второго вагона, при двусторонней эвакуации - в зоне чет­вертого вагона от очага пожара.

К-во Просмотров: 224
Бесплатно скачать Курсовая работа: Проект вагона МЧС для проведения аварийно-спасательных работ в метрополитене