Курсовая работа: Проект вагона МЧС для проведения аварийно-спасательных работ в метрополитене
Во всех случаях эвакуации пассажиров со станции по эскалатору должен быть обеспечен вентиляционный режим, устраняющий возможность задымления эскалаторов и лестниц.
В настоящее время проблема обеспечения безопасной эвакуации людей при пожаре подвижного состава в перегонных тоннелях метрополитена в часы «пик» является нерешенной. Трагическим подтверждением этого является происшедший в 1995 г. пожар в Бакинском метрополитене, который сопровождался массовой гибелью и травмированием людей (погибло 286 чел., более 300 чел. травмировано).
В связи с этим были произведены исследования условий обеспечения безопасной эвакуации пассажиров при пожаре остановившегося в тоннеле подвижного состава метрополитена.
Основное условие обеспечения безопасности людей на любом объекте, в соответствии с нормативным документом, состоит в том, чтобы эвакуация из него была завершена до момента блокирования эвакуационных путей в результате распространения на них опасных факторов пожара (ОФП), имеющих для людей предельно допустимые значения.
Требование безопасности формулируется в виде выражения:
tэ <τбл
где t э - время эвакуации людей;
τ бл - время от начала пожара до блокирования путей эвакуации.
Время блокирования путей эвакуации определяется временем достижения ОФП критического значения по формуле:
τбл = 0,8τкр
Анализ результатов экспериментов, проведенных в Санкт-Петербургском филиале ВНИИПО в течение 1985 - 1992 гг., показал, что при наиболее жесткой динамике развития пожара (пожар в кабине управления) ОФП, определяющим его критическую продолжительность, является температура. Критическое значение температуры (70 °С) может быть определено как по результатам натурных экспериментов, так и путем математического моделирования. Однако для зоны пожара, находящейся в пределах аварийного вагона, наиболее достоверными являются данные, полученные в результате натурных экспериментов.
На рис. 8 представлены экспериментальные зависимости времени достижения критических значений температур по длине аварийного вагона на путях эвакуации в тоннеле, полученные при сжигании вагона метрополитена в натурном макете перегонного тоннеля.
Анализ данных зависимостей показал, что зона с критическими температурами (возле двери, ближайшей к очагу) формируется на 5-й минуте, а ее распространение в проходе на всю длину вагона заканчивается к 13-й минуте, т.е. на всю длину вагона эта зона распространяется в течение 8 мин. Средняя скорость распространения зоны с критическим значением опасного фактора пожара составляла 1,5 м мин-1 , что совпадает со скоростью распространения пожара в вагоне.
Следует отметить, что данный вывод распространяется только на участок тоннеля с аварийным вагоном, так как на стыке аварийного и смежного с ним вагона происходит некоторая задержка распространения горения, но при этом продолжается распространение ОФП в тоннеле.
В связи с отсутствием экспериментальных данных по распространению горения по подвижному составу в целом, для проведения расчетов температуры была использована квазидвухмерная математическая модель пожара подвижного состава в тоннеле метрополитена, разработанная в филиале ВНИИПО. Обработка результатов расчетов по данной модели позволила определить изменение температуры в перегонном тоннеле на уровне рабочей зоны в ходе распространения пожара на 2-й и последующие вагоны в зависимости от времени и продольной координаты (см. рис. 9).
Рис. 8. Зона распространения критической температуры в тоннеле вдоль аварийного вагона на путях эвакуации. 1 - распространение критической температуры в тоннеле вдоль боковых стенок вагона (термопары 1, 3, 5, 7, 9); 2 - распространение критической температуры в тоннеле в зоне открытых дверей (термопары 2,4,6,8); 3 - место расположение термопары; 4 - номер термопары.
Рис. 9. Изменение температуры в перегонном тоннеле на уровне рабочей зоны при развитом пожаре в салоне вагона.
1 - температура на стыке аварийного (вагон 1) и смежного (вагон 2) с ним вагона;
2 - температура на стыке 2 и 3 вагонов; 3 - температура на стыке 3 и 4 вагонов;
4 -температура на стыке 4 и 5 вагонов; 5 - температура на стыке 5 и б вагонов;
6 - температура на стыке 6 и 7 вагонов; 7 - температура на стыке 7 и 8 вагонов;
8 - температура за 8 вагоном; 9 - критическое значение температуры.
Таким образом, в результате анализа результатов экспериментальных исследований и проведения расчетов было получено распределение критической температуры среды в тоннеле по длине подвижного состава на путях эвакуации пассажиров.
Время эвакуации пассажиров определяется, исходя из следующего выражения:
tэ = tнэ + tр
где tэ - интервал времени от возникновения пожара до начала эвакуации пассажиров.
В связи с тем, что выходы из подвижного состава в тоннель и участки движения людей в тоннеле не соответствуют требованиям, предъявляемым к эвакуационным путям, параметры движения людского потока отличаются нормативных параметров. Поэтому для определения параметров движения людских потоков были проведены экспериментальные исследования процесса вынужденной эвакуации людей из вагонов подвижного состава.
Для оценки влияния условий эвакуации, аварийных ситуаций и других факторов на продолжительность эвакуации пассажиров была разработана математическая модель и программа расчета времени движения пассажиров из подвижного состава, остановившегося в тоннеле.
В математическую модель были включены данные, полученные в ходе проведения экспериментальных исследований по определению параметров движения пассажиров из остановившегося в тоннеле подвижного состава. Ее отличие от других моделей заключается в том, что скорость движения пассажиров определялась с учетом переменной плотности людского потока на участках эвакуационного пути.
Графические зависимости, характеризующие выполнение условия безопасности при пожаре в головной (хвостовой) части восьмивагонного подвижного состава в перегонном тоннеле метрополитена в часы «пик», приведены на рис. 10. При этом была принята максимальная «наполняемость» вагона (часы «пик»). Анализ данных, приведенных на рис. 10, показал, что безопасность пассажиров не обеспечивается как при односторонней эвакуации пассажиров по перегонному тоннелю, так и при двусторонней. При односторонней эвакуации условие безопасности не выполнялось в зоне второго вагона, при двусторонней эвакуации - в зоне четвертого вагона от очага пожара.