Курсовая работа: Проектирование автомобильного дизеля
ВВЕДЕНИЕ
Проблема экономии топливных ресурсов приобрела в настоящее время огромное значение практически для всех индустриально развитых стран, в том числе и для Украины.
Одним из главных потребителей нефтяного топлива является автомобильный тракторный транспорт, поэтому повышение экономичности и снижение выбросов вредных веществ для нормативов ЕВРО-3 является на сегодняшний день актуальной задачей. Важнейшим направлением в решение этой проблемы в первую очередь на грузовом, автомобильном, автобусном и сельскохозяйственном транспорте является дальнейшая его дизелизация, которая должна обеспечить в эксплуатации не только снижение на 25-30% расхода жидкого моторного топлива и более рациональное использование на транспорте всех видов моторных топлив, но и уменьшение загрязнении окружающей среды токсичными выбросами моторов. Реализация этого направления предусматривает как модернизацию выпускаемых, так и разработку новых типов дизелей. Большое распространение получили четырёхклапанные головки цилиндров с центральным расположением форсунки. В связи с высокими форсировками дизелей по литровой мощности увеличивается теплонапряженность деталей камеры сгорания и в частности поршня. Для обеспечения надежной работы поршня в условиях высоких термических нагрузок применяется охлаждение последнего маслом, при этом в поршне выполняем специальные охлаждающие каналы, а для подачи масла применяется форсунку, неподвижно установленную в картере дизеля. Ограничения, накладываемые на дизели для автомобилей, прежде всего, по экономичности, токсичности, ресурсу, массогабаритным и другим показателям, требуют создания быстроходных высокофорсированых дизелей с относительно малым рабочим объемом. Ряд ведущих автомобильных заводов, ПО, ассоциаций в СНГ (Кафедра ДВС НТУ «ХПИ», ЯМЗ,ХТЗ, ЛАЗ, «Серп и молот» , з-д им. Малышева, и др.) создали и приступают к налаживанию производства таких дизелей.
1. ОЦЕНКА И ВЫБОР ПАРАМЕТРОВ ДВИГАТЕЛЯ
Для каждого типа двигателей приняты, на основе многолетнего практического опыта, определенные ограничения в выборе параметров рабочих процессов и численных отношений величин конструктивных параметров. Учесть этот опыт можно на основе анализа конструкций доведенных и хорошо себя зарекомендовавших в эксплуатации дизелей.
1.1 Число и расположение цилиндров
При выборе числа цилиндров следует учитывать их влияние на массовые и габаритные показатели двигателя, диаметр цилиндра, уравновешенность сил инерции движущихся масс, равномерность вращения коленчатого вала, тепловую напряженность поршневой группы.
С увеличением числа цилиндров можно уменьшить диаметр цилиндра, улучшить уравновешенность и равномерность хода двигателя, при этом усиливается охлаждение поршневой группы, при однорядном расположении цилиндров длина двигателя несколько увеличивается, а высота двигателя и его ширина уменьшаются.
Число цилиндров двигателя Z, связанное непосредственно с диаметром цилиндра, определяется заданными размерами двигателя , степенью равномерности крутящего момента, зависящего от протекания рабочего процесса и числа тактов, тепловой напряженностью поршневой группы, требованиями к уравновешиванию движущихся масс и значением сил инерции этих масс, условиями производства двигателей (при большом числе цилиндров и меньшем диаметре снижается стоимость изготовления двигателя, особенно в случае крупносерийного производства);опасностью увеличения крутильных колебаний вала, возможностью пуска двигателя с любого положения коленчатого вала.
Число цилиндров в выполненных конструкциях находится в пределах 1-24.Как правило, в однорядных конструкциях Z = 4 - 10, в многорядных конструкциях 4-20. Изменение числа цилиндров (при данной мощности) влияет на механический и индикаторный КПД двигателя. В многоцилиндровых конструкциях при увеличении Z размеры цилиндра и всего двигателя уменьшаются, снижается также масса движущихся деталей, что позволяет повысить частоту вращения коленчатого вала без превышения допустимых напряжений в деталях. При определении размеров цилиндра используют данные о находящихся в эксплуатации двигателях и результаты опытов на одноцилиндровых установках..
1.2 Средняя скорость поршня и частота вращения
Одним из основных параметров, зависящих от типа двигателя и его назначения, является скорость поршня. С увеличением средней скорости поршня повышается тепловая напряженность деталей двигателя (в первую очередь поршневой группы), увеличиваются силы инерции, нагружающие детали кривошипно-шатунного механизма, а также износ подшипников коленчатого вала, гильзы, цилиндра, повышается скорость газов в органах газораспределения, вследствие чего возрастают гидравлические сопротивления в них.
В быстроходных дизелях средняя скорость поршня лежит в пределах 8-12 м/с. .
Частота вращения п коленчатого вала современных двигателей составляет 100-10000 об/мин и достигает в отдельных случаях 12000 - 15000 об/мин и более (малолитражные, гоночные автомобильные, мотоциклетные двигатели и т.д.).
Частота вращения вала стационарного двигателя, непосредственно связанного с электрогенератором, зависит от стандартного числа периодов переменного тока (50 периодов в секунду) при заданном числе пар полюсов электрогенератора. В последние годы наблюдается тенденция к отказу от значительного повышения частоты вращения двигателей. Повышение частоты вращения позволяет уменьшить диаметр цилиндра и ход поршня, и, следовательно, уменьшить габариты двигателя и его вес. Однако при этом возрастают механические потери и силы инерции, возвратно-поступательно движущихся масс, а, следовательно, повышается износ двигателя. Частота вращения коленчатого вала является определяющей для моторесурса двигателя. Поэтому число оборотов двигателя выбирают, исходя из назначения и условий его работы. Для автотракторных дизелей частоты вращения лежат в пределах 1500...3000 мин-
1.3 Диаметр цилиндра и ход поршня
Диаметр цилиндра влияет на тепловые потери в охлаждающую жидкость, тепловую напряженность поршня и головки цилиндра, нагрузки на кривошипно-шатунный механизм и подшипники. Этот параметр связан непосредственно со скоростью поршня и мощностью двигателя. В высокооборотных двигателях значение S/D целесообразно снижать до определенного предела для получения умеренной скорости поршня ,повышения механического КПД, уменьшения размеров в направлении оси цилиндра (особенно в двухтактных двигателях) и повышении жесткости коленчатого вала. С уменьшением радиуса кривошипа увеличивается перекрытие шатунных и коренных шеек, кроме того, снижается износ поршневых колец. При меньших S/D легче разместить детали механизма газораспределения в крышке цилиндра. Однако с уменьшением S/D увеличивается длина двигателя. При этом износ гильз почти не уменьшается, так как он пропорционален частоте вращения вала и практически не зависит от хода поршня. В двухтактных двигателях с прямоточной схемой газообмена при низких S/D ухудшается качество процесса газообмена. Следует отметить, что значения сил, действующих на узлы, определяются в большей степени диаметром цилиндра и в меньшей ходом поршня.
В существующих конструкциях автотракторных дизелей S/D находиться в пределах 1,6...0,85.Отношение хода поршня к диаметру цилиндра (S/D) является одним из основных параметров, определяющих размеры и массу двигателя. Уменьшение отношения S/D позволяет увеличить число оборотов двигателя без роста средней скорости поршня, повысить коэффициент наполнения, снизить тепловые потери в охлаждающую жидкость, увеличить перекрытия шатунных и коренных шеек, и тем самым, повышать жесткость коленчатого вала. Однако при этом увеличивается длина и вес рядного двигателя.
1.4 Длина шатуна
Длина шатуна L определяется из соотношения λ = R/L, где R-радиус кривошипа. При увеличении R (укороченный шатун) возрастает максимальный угол отклонения шатуна, что вынуждает в нижней части цилиндра делать вырезы, повышается боковое давление на стенку цилиндра, в связи с чем растут потери на трение и кроме того увеличиваются силы инерции второго порядка, уменьшается высота двигателя, вес двигателя и вес шатуна. Удлинение шатуна дает уменьшение угла наклона, однако это приводит к увеличению его массы, а, следовательно, сил инерции.
1.5 Степень сжатия
Степень сжатия является одним из основных параметров, от которых зависит экономичность двигателя. С увеличением ε увеличивается индикаторный и эффективный КПД двигателя. Однако рост ε ограничивается уменьшением прочности деталей и ростом механических потерь в двигателе.
Степень сжатия ε в дизелях с непосредственным впрыскиванием встречается в пределах 12...18.С увеличением ε увеличивается индикаторный КПД, однако для двигателей с наддувом увеличивается максимальное давление цикла pz. В автотракторных дизелях степень сжатия в основном определяется способом смесеобразования и частотой вращения, она также зависит от давления наддува.
1.6 Фазы газораспределения
Фазы газораспределения оказывают существенное влияние на показатели газообмена и качество рабочего процесса.
В быстроходных двигателях впускной клапан открывается с опережением 5-30°, т.е. до прихода поршня в ВМТ. Это обеспечивает наличие некоторого проходного сечения с самого начала такта впуска и увеличивает время открытия клапана. Закрывается впускной клапан с запаздыванием 30-90 °, т.е. после прохода поршнем НМТ. Это позволяет использовать инерционный напор всасываемого воздуха и улучшить наполнение.
Выпускной клапан, как правило, открывается с опережением 40-80 °, что значительно уменьшает работу двигателя за время выпуска. Закрытие выпускного клапана происходит, как правило, с запаздыванием 5-45 °, что обеспечивает лучшую очистку камеры сгорания от выпускных газов.
Оптимальные фазы газораспределения определяются экспериментально.
Учитывая всё выше сказанное выбираем три варианты параметров двигателя, результаты которого приведены в таблице
Таблица 1.1 – Оценка и выбор конструктивных параметров дизеля
№ п/п | Наименование параметра показателя, формула для вычисления | Размерность | Условное обозначение | Варианты численных значений | ||
1 | 2 | 3 | ||||
2 | Эффективная мощность | кВт | Ne | |||
3 | Срок службы до капитального ремонта | Ч | Т | |||
4 | Частота вращения коленвала | мин-1 | n | |||
5 | Ход поршня | М | S | |||
6 | Отношение | - | ||||
7 | Диаметр цилиндра | М | D | |||
8 |
Рабочий объем цилиндра
| М3 | Vh *103 | |||
9 | Среднее эффективное давление, принимаемое в первом приближении | МПа | ре | |||
10 |
--> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 389
Бесплатно скачать Курсовая работа: Проектирование автомобильного дизеля
|