Курсовая работа: Проектирование гидропривода цикловой автоматики

Найдем эффективные площади двух сторон поршня, по формуле (2.2):

После выбора гидроцилиндра возвращаемся к уравнению статического равновесия и рассчитываем давление в нагнетательной полости цилиндра при рабочем и холостом ходе без учета гидравлических потерь [1, c. 6].

Давление при рабочем ходе:

рР =(R+RП +RШ +RН + Mg)/F, (2.5)

Давление при холостом ходе:

рХ =(RП +RШ +RН ’- Mg)/F , (2.6)

Рассчитаем давление при рабочем ходе по формуле (2.5). Для этого найдем силу трения в направляющих:

RH=0,35∙R=0,35∙5000=1750 H,

RH’=M∙g∙=3300∙0,11=363 Н.

Так как в гидроцилиндре используются манжеты воротниковые, то формула для расчета потерь на трение в уплотненях цилиндров будет следующая [1, c. 24]:


где D – диаметр уплотняемой поверхности (мм);

L – ширина рабочей части манжеты (мм); p – давление масла (МПа);

pk – контактное давление при монтаже манжеты (pk = 2…5 МПа).

Давление масла на рабочем ходе, на холостом ходе: , контактное давление.

Таким образом, получим значение силы трения в поршне:

Рассчитаем силу трения в штоке, так как используется регулирование


на выходе, то, следовательно, давление

.

В итоге получаем давление на рабочем ходе:


Давление на холостом ходе:


3. Кинематический расчет

Данный расчет заключается в определении расходов, необходимых для обеспечения заданных рабочих и холостых ходов рабочих органов и последующим выборе стандартных насосных станций с одним или несколькими насосами. Максимальный расход определяется по формуле [1, c.7]:

Qp max =F·Vp max , (3.1)

где Vp max - максимальная скорость перемещения рабочего органа.

К-во Просмотров: 411
Бесплатно скачать Курсовая работа: Проектирование гидропривода цикловой автоматики