Курсовая работа: Проектирование процесса тестирования программного обеспечения

Рисунок 1 – Этапы тестирования ПО

При планировании процесса верификации и аттестации ПО менеджеры проекта должны определить, кто будет отвечать за разные этапы тестирования. Во многих случаях за тестирование своих программ (модулей или объектов) несут ответственность программисты. За следующий этап отвечает группа системной интеграции (сборки), которая интегрирует отдельные программные модули (возможно, полученные от разных разработчиков) в единую систему и тестирует эту систему в целом.

Для критических систем процесс тестирования должен быть более формальным. Такая формализация предполагает, что за все этапы тестирования отвечают независимые испытатели, все тесты разрабатываются отдельно и во время тестирования ведутся подробные записи. Чтобы протестировать критические системы, независимая группа разрабатывает тесты, исходя из спецификации каждого системного компонента.

При разработке некритических, "обычных" систем подробные спецификации для каждого системного компонента, как правило, не создаются. Определяются только интерфейсы компонентов, причем за проектирование, разработку и тестирование этих компонентов несут ответственность отдельные программисты или группы программистов. Таким образом, тестирование компонентов, как правило, основывается только на понимании разработчиками того, что должен делать компонент [1,2].

Тестирование сборки должно основываться на имеющейся спецификации системы. При составлении плана тестирования обычно используется спецификация системных требований или спецификация пользовательских требований. Тестированием сборки всегда занимается независимая группа.

Во многих книгах, посвященных тестированию программного обеспечения, например [1], описывается процесс тестирования программных систем, реализующих функциональную модель ПО, но не рассматривается отдельно тестирование объектно-ориентированных систем. В контексте тестирования между объектно-ориентированными и функционально-ориентированными системами имеется ряд отличий.

1. В функционально-ориентированных системах существует четко определенное различие между основными программными элементами (функциями) и совокупностью этих элементов (модулями). В объектно-ориентированных системах этого нет. Объекты могут быть простыми элементами, например списком, или сложными, например такими, как объект метеорологической станции, состоящий из ряда других объектов.

2. В объектно-ориентированных системах, как правило, нет такой четкой иерархии объектов, как в функционально-ориентированных системах. Поэтому такие методы интеграции систем, как нисходящая или восходящая сборка (1.5), часто не подходят для объектно-ориентированных систем [1,3].

Таким образом, в объектно-ориентированных системах между тестированием компонентов и тестированием сборки нет четких границ. В таких системах процесс тестирования является продолжением процесса разработки, где основной системной структурой являются объекты. Несмотря на то, что большая часть методов тестирования подходит для систем любых видов, для тестирования объектно-ориентированных систем необходимы специальные методы. Такие методы рассмотрены в разделе 2 [1,2].

1.1 Тестирование дефектов

Целью тестирования дефектов является выявление в программной системе скрытых дефектов до того, как она будет сдана заказчику. Тестирование дефектов противоположно аттестации, в ходе которой проверяется соответствие системы своей спецификации. Во время аттестации система должна корректно работать со всеми заданными тестовыми данными. При тестировании дефектов запускается такой тест, который вызывает некорректную работу программы и, следовательно, выявляет дефект. Обратите внимание на эту важную особенность: тестирование дефектов демонстрирует наличие, а не отсутствие дефектов в программе [2].

Общая модель процесса тестирования дефектов показана на рисунке 2 Тестовые сценарии – это спецификации входных тестовых данных и ожидаемых выходных данных плюс описание процедуры тестирования. Тестовые данные иногда генерируются автоматически. Автоматическая генерация тестовых сценариев невозможна, поскольку результаты проведения теста не всегда можно предсказать заранее.

Рисунок 2 – Процесс тестирования дефектов

Полное тестирование, когда проверяются все возможные последовательности выполнения программы, нереально. Поэтому тестирование должно базироваться на некотором подмножестве всевозможных тестовых сценариев. Существуют различные методики выбора этого подмножества. Например, тестовые сценарии могут предусмотреть выполнение всех операторов в программе, по меньшей мере, один раз. Альтернативная методика отбора тестовых сценариев базируется на опыте использования подобных систем, в этом случае тестированию подвергаются только определенные средства и функции работающей системы, например следующие.

Из опыта тестирования (и эксплуатации) больших программных продуктов, таких, как текстовые процессоры или электронные таблицы, вытекает, что необычные комбинации функций иногда могут вызывать ошибки, но наиболее часто используемые функции всегда работают правильно.[2,3].


1.2 Тестирование методом черного ящика

Тестирование методом черного ящика базируется на том, что все тесты основываются на спецификации системы или ее компонентов. Система представляется как "черный ящик", поведение которого можно определить только посредством изучения ее входных и соответствующих выходных данных. Другое название этого метода – функциональное тестирование связано с тем, что испытатель проверяет не реализацию ПО, а только его выполняемые функции [2,3].

На рисунке 3 показана модель системы, тестируемая методом черного ящика. Этот метод также применим к системам, организованным в виде набора функций или объектов. Испытатель подставляет в компонент или систему входные данные и исследует соответствующие выходные данные. Если выходные данные не совпадают с предсказанными, значит, во время тестирования ПО успешно обнаружена ошибка (дефект).

Основная задача испытателя – подобрать такие входные данные, чтобы среди них с высокой вероятностью присутствовали элементы множества 1е . Во многих случаях выбор тестовых данных основывается на предварительном опыте испытателя. Однако дополнительно к этим эвристическим знаниям можно также использовать систематический метод выбора входных данных, обсуждаемый в следующем разделе [2,3].

Рисунок 3 – Тестирование методом черного ящика

1.3 Структурное тестирование

Метод структурного тестирования (рисунок 4) предполагает создание тестов на основе структуры системы и ее реализации. Такой подход иногда называют тестированием методом "белого ящика", "стеклянного ящика" или "прозрачного ящика", чтобы отличать его от тестирования методом черного ящика [3].

Рисунок 4 – Структурное тестирование

Как правило, структурное тестирование применяется к относительно небольшим программным элементам, например к подпрограммам или методам, ассоциированным с объектами. При таком подходе испытатель анализирует программный код и для получения тестовых данных использует знания о структуре компонента. Например, из анализа кода можно определить, сколько контрольных тестов нужно выполнить для того, чтобы в процессе тестирования все операторы выполнились, по крайней мере, один раз [2-4].

1.4 Тестирование ветвей

Это метод структурного тестирования, при котором проверяются все независимо выполняемые ветви компонента или программы. Если выполняются все независимые ветви, то и все операторы должны выполняться, по крайней мере, один раз. Более того, все условные операторы тестируются как с истинными, так и с ложными значениями условий. В объектно-ориентированных системах тестирование ветвей используется для тестирования методов, ассоциированных с объектами.

Количество ветвей в программе обычно пропорционально ее размеру. После интеграции программных модулей в систему, методы структурного тестирования оказываются невыполнимыми. Поэтому методы тестирования ветвей, как правило, используются при тестировании отдельных программных элементов и модулей [2,3].

При тестировании ветвей не проверяются все возможные комбинации ветвей программы. Не считая самых тривиальных программных компонентов без циклов, подобная полная проверка компонента оказывается нереальной, так как в программах с циклами существует бесконечное число возможных комбинаций ветвей. В программе могут быть дефекты, которые проявляются только при определенных комбинациях ветвей, даже если все операторы программы протестированы (т.е. выполнились) хотя бы один раз.

Метод тестирования ветвей основывается на графе потоков управления программы. Этот граф представляет собой скелетную модель всех ветвей программы. Граф потоков управления состоит из узлов, соответствующих ветвлениям решений, и дуг, показывающих поток управления. Если в программе нет операторов безусловного перехода, то создание графа – достаточно простой процесс. При построении графа потоков все последовательные операторы (операторы присвоения, вызова процедур и ввода-вывода) можно проигнорировать. Каждое ветвление операторов условного перехода (if-then-else или case) представлено отдельной ветвью, а циклы обозначаются стрелками, концы которых замкнуты на узле с условием цикла. На рисунке 5 показаны циклы и ветвления в графе потоков управления программы бинарного поиска [3].


К-во Просмотров: 214
Бесплатно скачать Курсовая работа: Проектирование процесса тестирования программного обеспечения