Курсовая работа: Проектирование суммирующего двоично-десятичного счетчика импульсов
Содержание
Введение
1. Проектировочный раздел
1.1 Назначение устройства
1.2 Выбор и обоснование структурной схемы устройства
1.3 Логический расчёт
1.4 Составление карт функций перехода FQ
1.5 Составление минимизированных логических уравнений
1.6 Разработка принципиальной схемы устройства
2. Конструкторско-технологический раздел
2.1 Выбор и обоснование способа изготовления печатных плат
2.1.1 Методы изготовления печатных плат
2.1.2 Выбор и обоснование способа изготовления печатной платы
2.1.3 Очистка заготовки, сверловка, нанесение флюса, лужение
2.2 Выбор и обоснование способа монтажа элементов
3. Охрана труда
3.1 Меры безопасности при изготовлении печатных плат
3.1.1 Основы безопасности производства печатных плат
Заключение
Литература
Введение
Основной элементной базой современной дискретной техники является интегральная микроэлектроника. Огромные успехи, достигнутые интегральной полупроводниковой микроэлектронной технологией, позволили создать приборы, по всем параметрам превосходящие изделия сходного назначения, собранные на отдельных компонентах. Переход к интегральным микросхемам существенно изменил способы построения электронной аппаратуры, поскольку изделия микросхемотехники представляют собой законченные функциональные узлы, будь то логические элементы для выполнения простейших операций или процессоры вычислительных машин, состоящие из многих тысяч элементов.
Современный этап развития микроэлектронной техники характеризуется широким применением микросхем средней и большой степени интеграции. Преимущество цифровых систем на интегральных схемах СИС сравнительно с устройствами, реализованными на приборах МИС, не только в меньшем числе корпусов. С помощью СИС достигается более высокое быстродействие, поскольку задержка импульсов в объеме кристалла меньше задержек во внешних соединениях. Кроме того, элементы, образующие СИС, для уменьшения времени переключения используются, где это допустимо, в ненасыщенном режиме. Функциональные устройства СИС расходуют меньше энергии, поскольку мощность, потребляемая внутренним элементом для переключения конкретной нагрузки, наперед известна, тогда как изделия МИС рассчитываются на максимальную возможную нагрузку, которая в большинстве случаев используется не полностью. Помехоустойчивость СИС также выше, если учесть, что соединения внутри кристалла менее подвержены действию наводок, чем соединения между отдельными интегральными схемами и платами.
В качестве активных элементов цифровых микросхем сейчас применяются два типа транзисторов: биполярные и полевые (униполярные). Последние имеют структуру металл - окисел - полупроводник (МОП) или, как ее еще называют, металл-диэлектрик-полупроводник (МДП). Цифровые микросхемы на биполярных и полевых транзисторах существенно различаются по многим показателям, и развитие их идет самостоятельными путями.
Микросхемы на основе полевых транзисторов также широко используются в настоящее время. Наиболее распространены и перспективны схемы, основанные на совместном включении пары транзисторов с каналами разных видов проводимости, так называемые комплементарные структуры (КМОП-структуры).
Для удобства разработчиков аппаратуры и по технологическим признакам цифровые интегральные схемы выпускают сериями. Серией называют совокупность микросхем различного функционального назначения, которые имеют согласованные электрические и временные параметры для совместного использования. Микросхемы одной серии изготавливают по единой технологии, и они имеют сходное конструктивное исполнение. В состав современных развитых серий входят десятки типов микросхем - от логических элементов до функционально законченных узлов: счетчиков, регистров, сумматоров, запоминающих устройств, арифметико-логических узлов, микропроцессоров и других.
Но не смотря на это возникает задача проектирования узкоспециализированных устройств.
1. Проектировочный раздел
1.1 Назначение устройства
Счетчики предназначены для подсчета числа входных импульсов. Основным элементом при построении счетчиков являются триггерные устройства. Один триггер образует один разряд счетчика. n - триггеров образуют n - разрядный счетчик. Так как каждый триггер имеет два устойчивых состояния, то n - триггеров имеют 2 n состояний. Основным параметром любого счетчика является его емкость (коэффициент пересчета, модуль счета).
Ксч = 2 n - максимальное число состояний счетчика, включая нулевое состояние. Количество импульсов, которое может быть подсчитано n - разрядным счетчиком равно N = 2 n - 1 (исключается нулевое состояние).
Счетчики можно классифицировать:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--