Курсовая работа: Проектирование твердотопливного ракетного двигателя третьей ступени трехступенчатой баллистической ракеты
Полная начальная площадь горения заряда:
Определение начального объема заряда:
Определяем граничное значение е=e’, при котором исчезает дуговая часть периметра канала щелевой части (φ=π/4):
.
Определяем максимальное значение lmax:
.
Для ряда значений е[0,lmax] определяем текущую площадь поверхности горения и объем заряда (λ=0,6):
Определяем характеристики прогрессивности σ и ψ для найденных значений S и w, результаты заносим в таблицу:
.
e, м | 0 | 0,1 | 0,2 | 0,3 | 0,4 |
1,14 | 9,043 | 17,124 | 25,576 | 34,679 | |
3,8 | 21,069 | 30,833 | 37,341 | 42,08 | |
S, | 5,695 | 6,228 | 6,494 | 6,488 | 6,189 |
2,438 | 2,106 | 1,671 | 1,162 | 0,611 | |
1 | 1,094 | 1,14 | 1,139 | 1,087 | |
0 | 0,136 | 0,314 | 0,523 | 0,749 |
Вывод:
Постоянство (примерное) значения величины σ говорит о том, что тяга РДТТ остается величиной постоянной при полном выгорании топлива.
2.4 Расчет звездчатого заряда РДТТ
Звездчатые заряды нашли очень широкое применение в современных двигателях твердого топлива, благодаря отработанной технологии изготовления и высокому коэффициенту внутреннего заполнения, однако звездчатые заряды имеют дигрессивные остатки топлива, которые можно устранить профилированием внутренней поверхности камеры сгорания и применением вкладышей из легких материалов.
Также по сравнению со щелевыми зарядами они дают меньшее время работы, а также наличие участков с повышенной концентрацией напряжений.
Исходные данные:
Тяга двигателя Р = 160 кН;
Ускорение свободного падения g = 9,81 м/с2 ;
Время работы двигателя τ = 60 с;
Диаметр заряда Dз = 1,457 м;
Плотность топлива ρт = 1770 кг/м3 ;
Температура горения топлива Тк = 3300 К;
Скорость горения топлива u = 0,0085 м/с;
Удельный импульс тяги с учетом потерь Jуд = 2352 м/с;
Газовая постоянная R = 307 Дж/(кг·К);