Курсовая работа: Проектування і розрахунок керованих випрямлячів електричного струму
= (1·528) / (1·528 + 1·9,45 + 2,6 + 1·8,0) = 0,963.
б) = Ud /Udn ∙2 = 0,5,
= (0,5·528) /(0,5·528 + 0,25·9,45 + 2,6 + 0,25·8,0) = 0,953.
1.2 Розробка СІФК
Для регулювання вихідної напруги випрямляча застосуємо фазо-імпульсний метод. При цьому до складу перетворюючого пристроя не вводять додаткових силових вузлів, а лише у якості вентелів випрямної схеми використовують керовані ключі – як правило, тиристори. Принцип дії регулятора полягає у тому, що за допомогою спеціальної схеми керування забезпечується регульована затримка на вмикання тиристорів відносно переходу через нуль змінної синусоїдальної напруги. Тобто фаза послідовності імпульсів керування змінюється щодо фази синусоїдної напруги.
Перевагою імпульсних методів керування є те, що, перш за все, надлишок енергії тут просто не береться від джерела живлення (а не гаситься на баластному елементі, як, наприклад, у компенсаційному стабілізаторі). Це в ідеалі (якщо вважати елементи регулятора такими, що не мають, наприклад, опору) за принципом побудови регулятора обумовлює величину ККД у 100 відсотках.
Завданням СІФК є генерація імпульсів керування необхідної амплітуди, тривалості і форми, розподіл їх по відповідних вентилях і визначення моменту подачі цих імпульсів відносно переходу змінної напруги через нуль.
СІФК повинна відповідати наступним вимогам:
1) забезпечувати достатню для вмикання тиристорів амплітуду напруги і струму імпульсів керування – (10...20) В, (20...2000) мА;
2) забезпечувати високу крутизну фронтів імпульсів – (150...200) В/ел. градус;
3) забезпечувати регулювання величини кута α у загальному діапазоні з необхідною точністю;
4) забезпечувати симетрію імпульсів керування по фазах випрямляча;
5) забезпечувати достатню для надійного вмикання тиристорів тривалість імпульсів керування – взагалі їх тривалість може складати (π-α), але це не економічно-достатньо, щоб вона була такою, коли струм через тиристор за час дії імпульсу перевищує величину струму утримання;
6) мати високу завадостійкість.
1.2.1 Розрахунок вихідного каскаду
Для забезпечення захисту тиристора від зворотної напруги на керуючому електроді, паралельно керуючому електроду ставимо діод КД212Г, що забезпечує проходження струму не меншого, ніж струм керуючого електроду 0,3А. Він має параметри:
Iпр.max=1А;Uпр.=1,2В; Uзв.max=100В; Iзв.max=0,1мА.
Оскільки напруга керуючого електроду тиристора і напруга захисного діода VD3 різні, введемо в схему обмежуючий резистор послідовно з вторинною обмоткою трансформатора вихідного каскаду, що дозволить вирівняти напругу на виході трансформатора. Задамо, щоб падіння напруги на обмежуючому резисторі дорівнювало двом третім напруги керування,де Umир .=3 В при струмі керуючого електроду Іm =0,3 А. Тоді вихідна напруга трансформаторастановитиме
Um = Umир .· 5/3=3·5/3=5В
Опір обмежуючого резистора
Rобм = (Um – Umир .) /Im = (5-3)/0,3=6,66 Ом
Із номінального ряду опорів вибираємо 6,8 Ом. Для забезпечення формування короткого імпульсу виберемо транзисторний насичений ключ з трансформаторним виходом (рис.5).
Задаємось напругою живлення каскаду Еk = 25В.
Для забезпечення якомога, більшого коефіцієнта підсилення, частотного діапазону для формування переднього фронту імпульсу, а також допустимих напруги та струму на навантаженні попередньо виберемо транзистор КТ972А з параметрами:
Ukе доп. > 2∙ Ek
Іk доп. = 4 А; Ukе доп. = 65 В; Ів mах = 0,5 А;fа = 20МГц;
rв = 3 Ом; rе = 0,08 Ом; rk =730 кОм; = 750; Ukе п. = 1,5 В.
Рис.5. Транзисторний насичений ключ з трансформаторним виходом