Курсовая работа: Прогнозування розвитку динаміки України як господарської системи
Моделі можуть бути використані центральними банками в будь-якій частині макроекономічного аналізу, який містить:
- розуміння та чисельну характеристику того, як працюють економіка та монетарна політика;
- дослідження, в якому стані зараз перебуває економіка і які короткострокові передбачення найбільш імовірні;
- розробку довгострокових передбачень для визначення того, якої саме монетарної політики слід дотримуватися.
Перший з цих пунктів зазвичай включає економетричне тестування гіпотез щодо різних аспектів економічної поведінки. Наприклад, центральний банк може спробувати дослідити та виміряти ефекти впливу зміни ставки позичкового процента на експорт та імпорт товарів. Для цього, як правило, використовують низку рівнянь, які відображають зміни відповідних економічних змінних. Такі рівняння можуть бути необ'єднаними до однієї моделі економіки, а лише використовуватися для спостереження за економічними явищами, проте навіть найбільш вдалі рівняння не можуть повністю відновити залежність між економічними даними. Таким чином, кожне з рівнянь будь-якої моделі чи її частини повинно містити похибку. Вивчаючи, яким чином змінюється величина цієї похибки в залежності від часу та деяких інших обставин, можна зробити декілька висновків. По-перше, наскільки адекватна модель (чи група рівнянь) процесу, що спостерігається. По-друге, яким чином змінюється поведінка індивідів, реакція суб'єктів економіки на зовнішні сили. Такий аналіз можливий лише за умови, коли аналітик впевнений у відповідності обраної моделі до практики. Така впевненість може бути доволі суб'єктивною, тому необхідно виробити критерії визначення ступеня адекватності моделі. Для розробки таких критеріїв розглянемо спочатку основні типи моделей, які використовуються для моделювання економічних взаємозв'язків.
Особливої уваги заслуговують структурні моделі, вони складаються з залежностей, основаних на економічних засадах. Наприклад, ВВП моделюється як сума приватного споживання, інвестицій, державних витрат та балансу торгівлі. Взагалі, у сучасній європейській ринковій економіці, нема ніякої причини для того, щоб такі моделі були великими. Достатньо побудувати модель, яка складається з трьох рівнянь і містить три ендогенні змінні (реальний випуск, рівень цін та ставку кредитування) і одну екзогенну змінну – пропозицію грошей. Але для детального аналізу економічних зв'язків такої моделі замало, до неї необхідно включити обмінний курс, основні статті платіжного балансу, бюджетний дефіцит і т. д. Основні вимоги до структурної моделі потребують побудови близько 30 рівнянь, причому, якщо треба дослідити більш ретельно деякий сектор економіки, кількість рівнянь значно збільшується. В результаті модель стає громіздкою, важко зрозуміти її основні ознаки, а її прогнозна точність може виявитися гіршою за елементарну модель. Історія багатьох моделей складається з того, що їх поступово покращували, збільшуючи при цьому кількість рівнянь, модифікуючи їх, і після цього модель відкидалася, як така, що не адекватно реагує на зміни в економіці або не може згенерувати прийнятні прогнози.
Одним з прикладів є модель, яку до 1994 році використовував Банк Великої Британії. Вона була розроблена у 1970-х роках у Лондонській Школі Бізнесу. Протягом 1980-х років модель широко використовувалася, економісти покладалися на неї при розробці прогнозів, аналізі економічної ситуації. Для більш детального аналізу, деякі відділи Банку розширювали модель, в результаті чого деякий час модель містила біля 600 економічних змінних. На початку 1990-х років ця кількість була зменшена до 350, з яких біля 100 були екзогенними. Інші 250 змінних були ендогенними, з яких 170 описували економічні залежності між змінними, а 80 – тотожності.
Прогнози, з генеровані цією моделлю були достатньо точними, але її розмір не тільки робив працю аналітиків дуже важкою: завдяки йому втратилися ключові залежності між змінними. Було прийнято рішення зменшити модель до мінімуму, який би відповідав вимогам розробників економічної політики. Тепер модель містить лише 22 чисто економічні рівняння, більш як 50 екзогенних та приблизно таку ж кількість тотожностей, таким чином, загальна кількість змінних дорівнювала 130, але модель залишається складною для аналітичного прогнозування. Аналітики вимагають побудови малих моделей на мікроекономічних принципах, коли основна увага приділяється визначенню залежностей, а не точності прогнозів. Такі моделі повинні містити біля 30 змінних.
Враховуючи це, слід визначити, що мета прогнозування тісно пов'язана з вибором типу моделей. Так, а теоретичні моделі, не намагаються пояснити економічну поведінку. Якщо, наприклад, структурна модель може включати рівняння, які пояснюють попит та пропозицію грошей, то а теоретична модель включатиме лише рівняння, яке визначає кількість грошей в залежності від інших факторів (наприклад, рівня цін або попередніх значень кількості грошей). УАК моделі як раз комбінують такі а теоретичні зв'язки. УАК модель є системою рівнянь, де кожна змінна використовується для визначення іншої змінної в моделі. Кожна змінна залежить від своїх попередніх значень та попередніх значень всіх інших змінних моделі. На відміну від економічних залежностей УАЕ моделі ніколи не намагаються зробити які-небудь обмеження про залежність змінних. Оскільки УАЕ моделі використовують попередні значення змінних, то такі моделі придатні для короткострокового прогнозування, проте існує два суттєвих недоліки таких моделей: по-перше, велика кількість даних, необхідних для побудови моделі; по-друге, вони не пояснюють економічної суті залежності між змінними. Обидва типи структурних та УАК моделей можуть бути використані для прогнозування розвитку економічних змінних. Як зазначено вище, УАК моделі виробляють прогнози на короткий період часу, але вони надто залежні від структури економіки. Лише незначна зміна в структурі призводить до значних похибок прогнозів. На відміну від УАК моделей структурні моделі більш гнучкі, що дозволяє їх легко розуміти та вносити до них корективи.
Нарешті, прогнози розробляються і спеціалістами у даній галузі. Використання суб'єктивних прогнозів є доцільним, оскільки експерти мають інформацію про нещодавні події, ефект яких ще не впливав на часові ряди, або подій, які траплялися у минулому, але не очікується їх поява у майбутньому, або подій, що не траплялися у минулому, але які дуже імовірно проявляться у майбутньому. Наприклад, експерти можуть передбачити, як зміниться політика центрального банку протягом прогнозного періоду, або вони очікують великих змін в економіці в залежності від зміни, наприклад, податків. Однак хибою таких оцінок є те, що навіть один і той самий експерт у різний час може давати різні прогнозні значення на деякий визначений період. На відміну від прогнозів експертів, статистичні методи надійні в тому плані, що за однакової початкової інформації, дослідник отримає завжди однакові прогнозні значення, Але ці методи не використовують вплив останніх подій, які ще не відображені у даних.
Єдиним виходом з ситуації, коли обидва типи прогнозів не мають задовільної точності є їх поєднання. Це можна зробити багатьма шляхами. По-перше, експерти визначають, які саме данні важливі при прогнозуванні. По-друге, експерти можуть визначити, який саме підхід слід використовувати при прогнозуванні саме цих рядів даних. Наприклад, якщо експерти очікують постійного спаду ВНП, то вони пропонують трендову модель. Нарешті, експерти можуть вказати основні тенденції прогнозу, такі як: спад, зростання, без змін, тощо, або вказати максимальні відхилення прогнозу від поточного рівня.
Армстронг виділяє п'ять процедур, які утворені поєднанням експертних суджень і статистичних методів:
а) Перероблений прогноз експерта, який утворений на основі статистичного прогнозу.
б) Комбінований прогноз, який утворений на основі вибору експертом відповідного статистичного методу, або утворений як лінійна комбінація прогнозів.
в) Перероблений екстрапольований прогноз, який утворений на основі статистичного прогнозу, але експерти змінили величину прогнозу в залежності від політичних або інших сподівань.
г) Оснований на специфічних знаннях. Цей прогноз будується як статистична екстраполяція суджень експертів в даній галузі. Наприклад, якщо експерт вважає, що експорт у першому кварталі має спадати, то не може бути обраний статистичний метод, при якому відбувається зростання у цей період.
д)Економетричний прогноз, побудований на основі регресійного аналізу або структурної моделі по даних, які обрані експертами. Ці дані в деяких випадках показують не тільки економічну інформацію, але й деякі політичні впливи.
Для вибору оптимальної моделі враховується багато факторів, серед яких необхідно виділити:
а) Наявність достатньої кількості спеціалістів для підтримки відповідного типу моделі, які мають вводити потрібну інформацію до моделі, редагувати її, виводити прогнозні значення. Якщо припустити, що кіль кість даних значно перевищує можливості вводу, то виникає необхідність скласти план агрегації чи модифікації даних.
б) Структура даних, які будуть використовуватися в моделі. Необхідно чітко визначити, які відділи чи установи, в який час генерують відповідні дані, як само їх треба обробляти. Вся зайва інформація повинна бути виключена.
в) Створення чітко визначених процедур аналізу нових даних. Перш за все необхідно побудувати графіки нових даних для того, щоб швидко усвідомити приблизну залежність даних, їх наповненість, структуру.
г) Необхідність будування в першу чергу залежності між малою кількістю змінних для знаходження ступеня взаємовпливу між ними, спостереження його зміни протягом часу. Можливість створення малої моделі економіки чи деякого процесу, на основі якої отримують прогнозні значення. Поступово ця модель буде видозмінюватися, що підвищить точність прогнозів.
Всі ці фактори вплинуть на вибір адекватної моделі. Найбільш імовірно, що при користуванні цими принципами буде побудована змішана модель, в якій частина рівнянь є структурними, частина рівнянь – представляє VER – модель, а ще існують деякі змінні, на які впливає головний спостерігач за моделлю. Такий вплив може здійснюватися на основі досвіду або інтуїції.
Особливо актуальним є створення подібних моделей у НБУ. Не секрет, що за останні декілька років, прогнозування у НБУ ускладнювалося внаслідок зміни політичної чи економічної ситуації. Тому можна констатувати, що в моделях не враховувалася саме ця частина, яку б міг імітувати головний спостерігач.
Все вищесказане підводить до алгоритму вибору найбільш раціональної стратегії прогнозування:
а) Визначити необхідну інформацію та цілі прогнозування.
б) Визначити на графічному зображен