Курсовая работа: Производство этиленгликоля методом гидратации окиси этилена

(диэтиленгликоль)


Именно эти две реакции лежат в основе гидратации окиси этилена. Диэтиленгликоль в этом случае является рабочим, а этиленгликоль целевым продуктом [4].

Масштабы применения окиси этилена и ее производных за последние два-три десятилетия достигли весьма высокого уровня и продолжают расти быстрыми темпами. Это объясняется потребностью в окиси этилена как в исходном сырье для получения продуктов, все более широко используемых в авто- и авиатранспорте, в химической, горной, нефтяной, текстильной и других отраслях, а также непосредственным ее применением в сельском хозяйстве, в современной технике, в частности в космонавтике.

3.2 Вода

Вода представляет собой бесцветную прозрачную жидкость. Теплоемкость воды составляет 4,18 Дж/(г·°С). Температура кипения воды составляет 100єС, замерзания 0°С. Вода – весьма реакционное вещество. Вода используется практически во всех производствах.

Окись этилена смешивается с водой во всех отношениях. Раствор окиси этилена при комнатной температуре весьма устойчив. Смесь паров воды и окиси этилена устойчива при температуре порядка 200єС.

Непрерывный процесс гидратации окиси этилена можно осуществлять с применением ионообменной смолы, взвешенной в жидкой реакционной массе. Также взаимодействие с водой можно вести при барбатировании окиси этилена в суспензию ионообменной смолы[6].


4. Технологическая схема производства

В качестве сырья применяют 98,5%-ную окись этилена и паровой конденсат. Конденсат из сборника 1 и окись этилена из сборника 2, охлажденная в холодильнике 3 до 5-60 С подаются в смеситель 4, куда поступает также обратный конденсат с температурой 300 С. Из него шихта, содержащая 10-15% окиси этилена и 88-90% воды по объему, направляется в трубчатый смеситель 6 и собирается в сборнике шихты 5, где поддерживается температура 5-60 С. Паровым насосом с давлением 10 атм. через подогреватель шихты 7 с температурой 1300 С шихта подается в гидротатор 8, в котором протекает реакция получения этиленгликоля. Из гидротатора 8 реакционная масса дросселируется до 0,3 атм в газосепаратор 11, откуда газовая фаза поступает в конденсатор 12, затем конденсат идет в напорный бак 1. Жидкая фаза из газосепаратора переходит в ректификационную колонну 14. отгоняющиеся пары конденсируются в дефлегматоре 13 и поступают в сборник конденсата 18. сюда же идет раствор щелочи для нейтрализации побочных продуктов реакции кислого характера. Конденсат из сборника 18 охлаждается в холодильнике 17 и направляется в смеситель 4. Из куба колонны вытекает 70%-ный этиленгликоль, который собирается в сборник 16. Центробежным насосом этиленгликоль подается через выносной кипятильник 15 во вторую ректификационную колонну 19 для отделения полигликолей. Пары этиленгликоля, выходя из колонны 19, конденсируются в конденсаторе 12. конденсатор, содержащий 70% этиленгликоля, забирается в сборник 20. Полигликоли, вытекающие из кубовой части колонны 19, собираются в сборнике 21 и направляются потребителю.

Основные параметры производства:

температура в гидротаторе 1650 С,

давление в гидротаторе 10 атм,

состав поступающей в гидротатор шихты:

- окиси этилена 10-15% по объему,

- воды 80-90% по объему,

температура верха первой ректификационной колонны 1000 С.

По описанной схеме этиленгликоль получается методом прямой гидротации окиси этилена без катализатора при давлении 10 атм и температуре 1650 С. Технологическая схема производства этиленгликоля представлена на рисунке 4.1[2].


5. Химические процессы и реакции

Реакция гидротации окиси этилена, приводящая к образованию этиленгликоля, известна еще со времени Вюрца, который проводил ее нагревание в автоклаве, водных растворов окиси этилена. В последнее время в связи с тем, что окись этилена вырабатывают все в больших количествах, эта реакция приобретает большое практическое значение. Получение этиленгликоля путем гидротации окиси этилена является наиболее целесообразным, т.к., исходя из дихлорэтана или из этиленхлоргидрина необходимо отделить образовавшийся продукт от сопутствующей ему соли, только при гидротации окиси этилена получается водный раствор гликоля без примеси солей и часто непосредственно годный к употреблению. Гидротация окиси этилена в водном растворе протекает достаточно эффективно при температурах ниже 150-1700 С. В присутствии кислот или щелочей гидротация ускоряется. Это позволяет проводить процесс при 120-1500 С. Однако в кислой среде образуется защита аппаратуры от коррозии, а щелочная среда особенно способствует образованию полигликолей [1].

Поэтому в настоящее время предпочитают проводить процесс гидротации в нейтральной среде при 160-1800 С. Производство этиленгликоля проходит в две стадии: на первой стадии получают гидротацией окиси этилена этиленгликоль, на второй – конденсацией образующегося этиленгликоля со второй молекулой окиси этилена диэтиленгликоль. Основная реакция процесса:

CH2 - CH2 + H2 O → CH2 OH - CH2 OH

O

Побочная реакция – образование диэтиленгликоля:

CH2 OH - CH2 OH + CH2 - CH2 → CH2 OH - CH2 - O - CH2 - CH2 OH.

O


В присутствии катализатора гидротацию окиси этилена проводят обычно под давлением 10 атм при мольном соотношении окиси этилена и воды примерно 1:16; продолжительность контакта 30 минут. Раствор гликолей упаривают в многокорпусном выпарном аппарате до содержания воды примерно 15% и далее подвергают ректификации. Соковый пар из последнего аппарата конденсируют и конденсат, содержащий 0,5-1,0% этиленгликоля, возвращают на гидротацию свежей окиси этилена. На 1т этиленгликоля примерно 120 кг диэтиленгликоля и 30 кг триэтиленгликоля.

Теплообменники «труба в трубе» (рисунок 5.1) включают несколько расположенных друг над другом элементов, причем каждый элемент состоит из двух труб: наружной трубы 1 большего диаметра и концентрически расположенной внутри неё трубы 2. Внутренние трубы элементов соединены друг с другом последовательно; также связаны между собой и наружные трубы. Для возможности очистки внутренние трубы соединяют при помощи съемных калачей 3.

Благодаря небольшому поперечному сечению в этих теплообменниках легко достигаются высокие скорости теплоносителей как в трубах, так и в межтрубном пространстве. При значительных количествах теплоносителей теплообменник составляют из нескольких параллельных секций, присоединяемых к общим коллекторам.

Преимущества теплообменников «труба в трубе»: 1) высокий коэффициент теплопередачи вследствие большой скорости обоих теплоносителей; 2) простота изготовления.

Недостатки этих теплообменников: 1) громоздкость; 2) высокая стоимость ввиду большого расхода металла на наружные трубы, не участвующие в теплообмене; 3) трудность очистки межтрубного пространства.

Теплообменники «труба в трубе» применяют при небольших количествах теплоносителя для теплообмена между двумя жидкостями, между жидкостью и конденсирующимся паром, а также в качестве холодильников для газов при высоких давлениях.


6. Продукты производства

6.1 Этиленгликоль

Этиленгликоль СН2 ОН – СН2 ОН – простейший двухатомный спирт, впервые синтезированный Вюрцем в 1859 г. Это вязкая бесцветная жидкость со слабым запахом и сладким вкусом (t кипения=197°С, t плавления находится в пределах от -11,5° С до -17,5° С , плотность 1,11 г/см3 , теплота парообразования 191 ккал/кг).

К-во Просмотров: 707
Бесплатно скачать Курсовая работа: Производство этиленгликоля методом гидратации окиси этилена