Курсовая работа: Производство этилового спирта

В настоящее время процесс гидратации этилена реализуется в промышленности при следующих условиях: t = 280-3000 С; Р = 8,0МПа; мольное соотношение пары воды: этилен = 0,6 : 0,8; катализатор – фосфорная кислота и фосфаты на алюмосиликате или силикагеле при содержании Н3 РО4 до 35% в свободном состоянии, объемная скорость циркулирующего газа 1800-2000ч-1 , что соответствует продолжительности контакта 18-20с и производительности 180-200кг этанола с 1м3 катализатора в 1 ч.

При этих условиях этилен расходуется примерно следующим образом: 95% - на образование этанола; 2-3% - этилового эфира; 1-2% - ацетальдегида; 1-2% - полимеров и др. продуктов.

В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.

Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.

Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.

Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% - на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000 С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.

Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200 С, что допустимо.

Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре.

Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.

1. Необходимо построить схему по принципу многократной циркуляции реакционной газовой смеси через реактор с отводом целевого продукта – этанола – конденсацией;

2. В качестве исходного продукта следует применять чистый этилен с минимальным содержанием инертных примесей, которые накапливаются в реакционной смеси и частично отводятся с рециркулирующей газовой смесью в виде «отдувки»;

3. Повышение давления процесса ограничено из-за опасности конденсации воды, снижающей активность катализатора;

4. Процесс необходимо проводить при эквимолярном или близком к нему соотношении этилен / водяной пар;

5. Необходимо наиболее полно регенерировать тепло, расходуемое на получение водяного пара;

6. Возможно применение адиабатического реактора простейшей конструкции;

7. Целесообразно подпитывать поступающую в реактор реакционную газовую смесь свежей фосфорной кислотой, необходима нейтрализация паров кислоты на выходе из реактора, включая регенерацию ее из выпавших солей.


5.Описание технологической схемы процесса производства этилового спирта

Технологическая схема синтеза производства этилового спирта

Технологические схемы синтеза этанола различаются способами получения водяного пара и системами утилизации тепла. В наиболее совершенных схемах водяной пар для синтеза получают путем рецикла воды после отделения этанола и использованием водяного конденсата.

Свежий и оборотный этилен сжимают в компрессорах 1,2 до 8МПа, смешиваются с водяным паром, подогреваются в теплообменнике 4 теплом отходящей от реактора смеси и перегреваются в трубчатой печи 3 до 275 °С, после чего подаются в реактор – гидрататор 5. Перед входом в реактор в поток вбрызгивается фосфорная кислота для подпитки катализатора, что продлевает срок его службы.

Реактор представляет собой полую колонну высотой Юм и диаметром 1,5м, работающую в режиме идеального вытеснения. Для исключения влияния коррозии от фосфорной кислоты изнутри он выложен листами красной меди.

Реакционные газы содержат пары унесенной фосфорной кислоты, которая нейтрализуется гидроксидом натрия, а образующиеся соли выделяются в солеотделителе 6. Унос фосфорной кислоты составляет 0,4 - 0,5 т/час с 1 мЗ катализатора.

Теплота отходящих реакционных газов регенерируется в теплообменнике 4 для нагрева входящей смеси. В холодильнике 7 происходит конденсация продуктов реакции, а в сепараторе 8 разделяются жидкие и газовые потоки. Вода, как менее летучий компонент, конденсируется с большей полнотой. Поэтому для дополнительного выделения спирта производится его отмывка водой в абсорбере 9. Непрореагировавший газэ содержащий 90 -92% этилена, рециркулируют компрессором 2, а часть его сбрасывают, чтобы избежать накопления примесей в системе. Отдувка составляет примерно 20% от введенного этилена и направляется на установку газоразделения для выделения этилена.

Водный конденсат после сепаратора 8 и жидкость из абсорбера 9 дросселируют (сбрасывают давление), в результате чего выделяются растворенные газы, отделяемые в сепараторе низкого давления 10 и направляемые в топливную линию.

Жидкая фаза из сепаратора 10 представляет собой 15% - ный водный раствор этанола, содержащий примеси диэтилового эфира, ацетальдегида и низкомолекулярных полимеров этилена. Этот раствор подвергают ректификации в ректификационных колоннах 11 и 12. В первой отгоняют наиболее летучий диэтиловый эфир и ацетальдегид, а во второй - этиловый спирт в виде азеотропной смеси, содержащей 95% этанола и 5% воды. Обогрев колонны осуществляется острым паром. В кубе колонны 12 остается вода, которую очищают от соли в ионообменной установке 13 и возвращают на гидратацию, организуя замкнутый цикл по технологической воде. Это позволяет значительно снизить расход свежей воды, исключить сброс отработанной воды в стоки и сократить потери этанола.


6.Расчет материального баланса ХТС

Исходные данные

1.

Концентрация С2 Н4 в этиленовой фракции.

g011 С2Н4

0,98

К-во Просмотров: 1241
Бесплатно скачать Курсовая работа: Производство этилового спирта