Курсовая работа: Процессы смесеобразования
Величина проходного сечения распыливающих отверстий fc определяется типом и размерами дизеля, условиями перед впускными органами. Она существенно влияет на продолжительность и давление впрыскивания, ограничена условиями обеспечения хорошего смесеобразования и тепловыделения. Поэтому при большом количестве распыливающих отверстий их диаметр должен быть небольшим. Чем меньше количество распыливающих отверстий, тем более интенсивно приводится во вращательное движение для полного сгорания топлива воздух, т.к. в этом случае заряд за характерный промежуток времени, принимаемый обычно равным продолжительности впрыскивания топлива, должен повернуться на больший угол. Это достигается применением винтового или тангенциального впускного каналов.
Создание вращательного движения заряда при впуске приводит к ухудшению наполнения цилиндров воздухом. Увеличение максимального значения тангенциальной скорости tmax вызывает уменьшение
v (рис. 9). Пристеночное смесеобразование. Способ смесеобразования, при котором топливо подается на стенку камеры сгорания и растекается по ее поверхности в виде тонкой пленки толщиной 12¸14 мкм, получил название пристеночного или пленочного.
Рис. 8. Камеры сгорания в поршне:
а) полусферическая типа дизелей ВТЗ; б) типа четырехтактных дизелей ЯМЗ и АМЗ; в) типа ЦНИДИ; г) типа дизелей "МАН"; д) типа "Дойтц"; е) типа дизеля Д-37М; ж) типа "Гессельман"; з) типа дизелей "Даймлер-Бенц"
Рис. 9. Зависимость коэффициента наполнения от значения тангенциальной составляющей скорости движения заряда
При таком смесеобразовании КС может быть расположена соосно с цилиндром, а форсунка смещена к ее периферии. Одна или две струи топлива направляются либо под острым углом на стенку КС, имеющей сферическую форму (рис. 8г), либо вблизи и вдоль стенки КС (рис. 8д). В обоих случаях заряд приводится в достаточно интенсивное вращательное движение (тангенциальная скорость движения заряда достигает 50¸60 м/с), способствующее распространению топливных капель вдоль стенки камеры сгорания. Топливная пленка испаряется за счет теплоты поршня.
После начала горения процесс испарения резко возрастает под действием теплопередачи от пламени к пленке топлива. Испарившееся топливо уносится потоком воздуха и сгорает во фронте пламени, распространяющегося от очага воспламенения. При впрыскивании топлива из-за затрат теплоты на его испарение существенно снижается температура заряда (до 150¸200 °С по осям струй). Это затрудняет воспламенение топлива вследствие уменьшения скорости химических реакций, предшествующих возникновению пламени.
Существенное улучшение воспламеняемости низкоцетановых топлив обесценивается при увеличении , которую у специальных многотопливных дизелей приходится повышать до 26. Для камер с пристеночным смесеобразованием опасность впрыскивания с недостаточной длиной топливных струй существенно меньше, чем в случае камер с объемным смесеобразованием. Поэтому повышение
не вызывает ухудшения смесеобразования. При пристеночном способе смесеобразования требуется менее тонкое распыливание топлива. Максимальные величины давления впрыскивания не превышают 40¸45 МПа. Используют одно-два распыливающих отверстия большого диаметра.
В дизелях нашла применение КС, разработанная Центральным научно-исследовательским дизельным институтом (ЦНИДИ) (рис 8в). Топливные факелы в такой камере попадают на ее боковые стенки под входной кромкой. Отличительная особенность смесеобразования – встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме КС, и сближает этот процесс с объемным смесеобразованием. При использовании камеры ЦНИДИ применяют 3¸5 сопловых отверстий. Параметры впрыскивания топлива близки к тем, которые имеют место в КС типа ВТЗ и ЯМЗ (рис. 8а, б).
Объемно-пристеночное смесеобразование. Такое смесеобразование получается при меньших диаметрах КС, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Часть этого топлива непосредственно соприкасается со стенкой КС. Другая часть располагается в пограничном слое заряда. Частичное попадание топлива на стенки камеры сгорания и интенсивное перемешивание воздуха и частиц топлива снижают количество паров топлива, образующихся в период задержки воспламенения. В результате снижается и скорость тепловыделения в начале сгорания. После появления пламени скорости испарения и смешивания резко возрастают. Поэтому подача части топлива в пристеночную зону не затягивает завершение сгорания, если температура стенки в местах попадания на нее струй находится в пределах 200¸300 °С.
При dкс /D = 0,5-0,6 (рис. 8а, б, ж) в связи со значительным ускорением вращения заряда при перетекании его в КС удается использовать 3¸5 распыливающих отверстий достаточно большого диаметра. Значение тангенциальной составляющей скорости движения заряда достигает 25¸30 м/с. Максимальные значения давлений впрыскивания, как правило, не превышают 50¸80 МПа.
В связи с тем, что на такте расширения во время обратного перетекания заряда из камеры часть несгоревшего топлива переносится в пространство над вытеснителем, где имеется еще не использованный для сгорания воздух. Он не полностью участвует в процессе окисления. Поэтому стремятся уменьшить до минимума объем заряда, находящегося в пространстве между поршнем (при положении в ВМТ) и головкой цилиндра, доводя высоту его δиз (рис 8а) до 0,9-1 мм. При этом важной оказывается стабилизация зазора при изготовлении и ремонте дизеля. Положительные результаты обеспечивает также минимизация зазора между головкой поршня и гильзой и уменьшение расстояния от днища поршня до первого компрессионного кольца.
Смесеобразование в разделенных камерах сгорания. Разделенные камеры сгорания состоят из основной и вспомогательной полостей, соединенных горловиной. В настоящее время применяют в основном вихревые КС и предкамеры.
Вихревые камеры сгорания. Вихревая камера сгорания (рис. 10) представляет собой шаровое или цилиндрическое пространство, соединенное с надпоршневым пространством цилиндра тангенциальным каналом. Объем VK вихревой КС 2 составляет примерно 60–80 % общего объема сжатия Vс , площадь fc поперечного сечения соединительного канала 3 cоставляет 1–5 % площади поршня Fп .
Как правило, в вихревых камерах сгорания используются закрытые форсунки 1 штифтового типа, обеспечивающие полый факел распыленного топлива.
При поступлении воздуха из цилиндра в вихревую камеру во время такта сжатия воздух интенсивно завихривается. Воздушный вихрь, непрерывно воздействуя на формирующийся топливный факел, способствует лучшему распыливанию топлива и смешиванию его с воздухом. В ходе начавшегося горения воздушный вихрь обеспечивает подвод к факелу свежего воздуха и отвод от него продуктов сгорания. При этом скорость вихря должна быть такой, чтобы за время впрыскивания топлива воздух мог совершить в камере сгорания не менее одного оборота.
Сгорание вначале происходит в вихревой камере. Повышающееся при этом давление вызывает перетекание продуктов сгорания и топливовоздушной смеси в цилиндр, где процесс сгорания завершается.
На рис. 11 представлены конструктивные элементы вихревых камер. Нижняя часть камеры, как правило, образуется специальной вставкой из жаропрочной стали, которая предохраняет головку от обгорания. Высокая температура вставки (800–900 К) способствует сокращению периода задержки воспламенения топлива в КС. Интенсивное вихреобразов?