Курсовая работа: Процессы выветривания горных пород
В результате дли тельного воздействия колебаний температуры и различных коэффициентов расширения минералов взаимное сцепление отдельных минеральных зерен в горной породе нарушается, она растрескивается и распадается на отдельные обломки. На интенсивность температурного выветривания влияют также окраска горной породы и размеры слагающих ее минеральных зерен. Известно, что под влиянием солнечных лучей (инсоляции) значительно сильней нагреваются темноцветные минералы. Вследствие этого быстрее разрушаются темноокрашенные, а также, крупнозернистые горные породы.
Температурное выветривание наиболее интенсивно протекает в областях, характеризующихся резкими контрастами температур, особенно суточных, сухостью воздуха и отсутствием или слаб ым разви тием растительного покрова, смягчающего температурное воздействие на почвы и горные породы. Особенно интенсивно температурное выветривание в пустынях, где количество выпадающих атмосферных осадков не превышает 200—250 мм/год, малая облачность, суточные колебания температуры нередко достигают 40—50С, очень большой дефицит влажности. Относительная влажность летом может снижаться до 10%, а иногда и ниже. В этих условиях горные породы под дейс твием солнечных лучей сильно нагреваются до температур, значительно превышающих температу ру воздуха (особенно темноцветные минералы), ночью же сильно охлаждаются. Именно в пустынях особенно ярко выражен процесс шелушения, или десквамации, при котором от поверхности горных пород отслаиваются чешуи или толстые пластины, параллельные поверхности породы.
Темп ературное выветривание интенсивно протекает также на вершинах и склонах гор, не пок рытых снегом и льдом, г де воздух прозрачнее и инсоляция значительно сильнее, чем в прилежащих низменностях. В ряде случаев температура воздуха днем здесь может достигать +20 - +30° С, а ночью падает почти до точки замерзания. [2, стр.40-47] стр.
Результат морозного выветривания
Механическое выветривание происходит под механическим воздействием п осторонних агентов. Осо бенно большое разрушительное действие оказывает замерзание воды. Когда вода попадает в трещины и поры горных пород, а потом замерзает, она увеличивается в объеме на 9—10%, производя при этом огромное давление. Такая сила преодолевает сопротивление горных пород н а разрыв, и они рас калываются на отдельные обломки. Наиболее интенсивное рас клинивающее действие производит замерзающая вода в трещинах горных пород. Но под влиянием замерзающей воды легко дробятся и породы с высокой пористостью, в которых поровое простран ство занимает около 10—30% объема (песчаники и другие осадочные породы). Процессы, связанные с воздействием периодически замерзающей воды, часто называют морозным выветриванием. Оно наблюдается в высоких полярных и субполярных широтах, а также в горных районах выше снеговой линии, где в ряде случаев проявляется и температурное выветривание.
Такое же механическое воздействие на горные породы оказывают корневая система деревьев и роющие животные. По мере разрастания деревьев увеличиваются в размерах их корни. Они давят с большой силой на стенки трещин и раздвигают их как клинья и тем самым вызывают раскалывание породы на отдельные глыбы и обломки. Часть таких глыб выталкивается вверх. Механическое воздействие оказывают и различные роющие животные, таки е, как земляные черви, муравьи, грызуны и др.
Дезинтеграцию пород вызывает так же рост кристаллов в капиллярных трещинах и порах. Это хорошо проявляется в условиях сухого климата, где днем при сильном нагревании к апиллярная вода подтягивается к поверхности и испаряется, а соли, содержащиеся в ней, кристаллизуются. Под давлением растущих кристаллов капиллярные трещи ны расширяются, что и приводит к нарушению монолитности горной породы и ее разрушению. [2, стр.61-64]
Следы физического выветривания
2. Химическое выветривание
Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений.
Разрушению горных пород под влиянием физичес кого выветривания всегда в той или иной степени со путствует химическое выветривание, а в ряде случаев последнее играет решающую роль. Это отражает тесную взаимосвязь различных форм единого процес са выветривания. Физическая дезинтеграция резко увеличивает реакционную поверхность выветривающихся пород. Главными факторами химического выветривания являются вода, кислород, углекислота и органические кислоты, под влиянием которых существенно изменяются структура и состав минералов и образуются новые минералы, соответствующие определенным физико-химическим условиям. Важнейший фактор химического выветривания — вода, которая в той или иной степени диссоциирована на положительно заряженные водородные ионы ( Н+ ) и отрицательно заряженные гидроксильные ионы (ОН- ). Это о пределяет ее возм ожность вступать в реакцию с кристаллическим веществом. Высокая концентрация водородных ионов в растворах способствует ускорению процессов выветривания.
Особенно возрастает интенсивность химического выветривания, когда в водном растворе присутствуют кислород, углекислота и органические кислоты, которые обладают большой активностью и во много раз повышают диссоциацию воды. В зависимости от реакции среды в процессе выветривания возникают те или иные характерные ассоциации минералов. Наиболее благоприятные условия для химического выветривания существуют в гумидных областях и особенно в тропических и субтропических зонах, где имеет место сочетание большой влажности, высо кой температуры, пышной растительности и огромного ежегодного отпада органической массы (в тропических лесах), в результате чего значительно возрастает концентрация углекислоты и органических кислот, а следовательно, возрастает и концентрация водородных ионов. Химическое воздействие на горные породы оказывают находящиеся в воде растворенные ион ы, так ие, как НСО3 — . SO-4 , С1-, Са+ , Mg+ , N a+ , К+ . Эти ионы также могут замещать заряженные атомы в кристаллах или взаимодействовать с ними, что может приводить к нарушению первичной кристаллической структуры ми нералов. Процессы, протекающие при химическом выветривании, заключаются в следующих основных химических реакциях: окислении, гидратации, растворении, гидролизе.
Окисление . Процессы окисления наиболее интенсивно проте кают в минералах, содержащих закисные соединения железа, марганца и других элементов. Так, сульфиды в кислой среде становятся неустойчивыми и постепенно замещаются сульфатами, окислами и гидроокислами. Направленность этого процесса можно схематически изобразить следующим образом:
F eS2 + nO2 + mH2 О ®FeSO4 ®Fe2 (SO4 )3 ®Fe2 O3 - nH2 О
железняк пирит сульфат сульфат (лимонит) закиси окиси железа
На первой стадии получаются сульфат закиси железа и серная кислота. Наличие серной кислоты значительно усиливает интенсивность выветривания, способствует дальнейшему разложению минералов. На второй стадии сульфат закиси железа переходит в сульфат окиси железа. Последний в свою очередь о казывается неустойчивым и под действием кислорода и воды - переходит в водную окись железа — бурый железняк. Бурый железняк фактически представляет собой сложный минеральный агрегат близких по составу минералов гётита ( FeO·OH) и гидрогётита ( FeO·OH·nH2 O). На поверхности ряда месторождений сульф идных руд и других железосодержащих минералов наблюдается “бурожелезняковая шляпа”, возникшая в результате одновременных окисления и гидратации. М естами при недостаточном количестве влаги образуются бедная водой окись железа, гидрогематит ( Fe2 O3 ·H2 O). В результате процессов окисления магнетит переходит в гематит, как это имеет место в районе КМ А. Гематит образуется и при окислении таких минералов, как оливин, пироксены, амфиболы, под действием воды, кислорода и углекислоты. Направленность реакции с ледующая:
(Mg , Fe)2 [SiO4 ] ® Fe2 O3 + n Mg(HCO3 )2 + m H4 SiO4 .
оливин гематит бикарбонат растворимый натрия кремнекислота
Дальнейший процесс окисления и гидратации может привести к образованию гидроокислов железа (Fе2 O3 ·nН2 O).
Гидратация — это процесс, заключающийся в присоедине нии воды к первичным минералам горных пород и образовании новых минералов. Можно привести следующие примеры ги дратации:
1. Переход ангидрита в гипс по реакции
СаSO4 +2H2 O ÛCaSO4 - 2H2 O(реакция обратима при изменении условий)
2. Переход гематита в гидроокислы железа:
Fе2 О3 +nН2 ОÛFе2 О3 ·nН2 О
При гидратации объем породы увеличивается и покрывающие отложения деформируются.
Растворение. Под влиянием воды, содержащей углекислоту, происходит растворение горных пород. Растворение особенно интенсивно проявляется в осадочных горных породах — хлоридных, сульфатных и карб онатных. Наибольшей растворимостью отличаются хлориды: соли натрия, калия и др. За хлоридами по степени раство римости стоят сульфаты, в частности ги пс, за которыми следуют карбонатные породы: известняки, доломиты, мергели. В результате растворяющей деятельности поверхностных и подземных вод на п оверхности растворимых пород образуются карстовые формы рельефа.
Гидролиз. Сложный процесс гидролиза особенно большое зна чени е имеет при выветривании силикатов и алюмосиликатов. Он заключается в разложении минералов, выносе отдельных элементов, а также в присоединении гидроксильных ионов и гидратации. В ходе гидролиза первичная кристаллическая структура минерала нарушается и перестраивается и может оказаться полностью разрушенной и заменена новой, существенно отличной от первоначальной и соответствующей вновь образованным гипер генным минералам. В ряде случаев гипергенное преобразование силикатов и алюмосиликатов под влиянием воды, углекислоты и органических кислот п ротекает стадийно с образованием различных глинистых минералов. В качестве примера можно привести схему разложения полевых шп атов (полевой шпат ®промежуточный минерал®каолинит):
K [AlSi3 O8 ] ® (К, Н2 О) А12 (ОН)2 [ A1Si3 O10 ]·nH2 0 ®A14 (ОН)8 [ A1Si3 O10 ] ортоклаз гидрослюда каолинит
каолинит |