Курсовая работа: Расчет гидросистемы с параллельно включенным дросселем
Подбор оборудования_________________________________________
____________________________________________________________________________________________________________________________________
Руководитель
Задание принял к исполнению__________________________________
Введение
При расчете курсовой работы необходимо знать: источники энергии (насосы), потребители энергии (гидродвигатели и др.) и уметь их увязывать в гидросистему.
В практике встречаются две задачи:
а) по исходным параметрам потребителя энергии (расходу, давлению, усилию, моменту и т.д.) требуется провести расчет гидролиний и определить исходные параметры для выбора источника энергии.
б) по имеющимся параметрам источника энергии определить возможность использования его с данным потребителем, т. е. провести проверочный расчет.
В основе решения этих задач лежит расчет гидролиний, т. е. определение потерь энергии в гидролиниях, диаметров трубопроводов, скорости движения жидкости, расходы жидкости, давлений.
Гидравлический расчет является составной частью инженерного расчета, который учитывает множество факторов: условия эксплуатации и надежность, экономические и технологические соображения, условия максимума унификации деталей и материально-технического снабжения и т.д. Поэтому, как правило, приходится выполнять несколько вариантов гидравлического расчета. Однако на данном этапе подготовки специалиста у него нет опыта и знаний, необходимых для учета всех факторов; инженерный расчет студенты выполняют при дипломном проектировании. Поэтому в данном методическом указании не рассматриваются другие стороны инженерного расчета.
Гидросхема
l01; l13 | l12 | l23 | l30 | Umax | Umin | fп | Fп | жидкость |
0,4 | 2,0 | 2,8 | 0,6 | 1,0 | 0,01 | 10·10-4 | 600 | АМГ-10 |
Насос при закрытом дросселе подает жидкость в гидроцилиндр и, далее, жидкость через фильтр сливается в бак, при этом скорость поршня гидроцилиндра максимальна. При полностью открытом дросселе только часть жидкости, подаваемой насосом, проходит в гидроцилиндр, в этом .случае скорость движения поршня будет максимальной. Предохранительный клапан предохраняет гидросистему от перегрузок
Определить тип насоса, подобрать гидроаппаратуру. Рассчитать мощность, подачу давления насоса, диаметры гидролиний, ударное повышение давления в точке 1, перепад давления на клапане. Построить напорную линию. Подобрать элементы гидросистемы.
Скорости движения жидкости в гидролиниях
Приступая к гидравлическому расчету гидролинии надо иметь в виду, что не всегда решение можно получить чисто гидравлическими методами. В этих случаях прибегают к технико-экономическому расчету. Дело в том, что с увеличением скорости резко возрастают потери энергии в гидролиниях, а с уменьшением скорости возрастает металлоемкость конструкции. Поэтому в каждом случаи существует оптимальные значения диаметров трубопроводов и скорости движения жидкости, при которых сумма годичных эксплуатационных и капитальных затрат оказывается минимальной. Это с одной стороны, а с другой стороны в различных отраслях промышленности к гидросистемам предъявляются различные требования, которые оказывают влияние на величину оптимальных значений диаметров и скорости.
Оптимальные значения диаметра трубопроводов и скорость движения жидкости в различных отраслях техники различны.
В общем машиностроении принято ограничивать скорость в зависимости от давления.
а) при коротких трубопроводах (l/d < 100) скорости находятся в пределах:
всасывающие – 0,5-1,5;
сливные – 2;
напорные – 3-5;
б) при длинных трубопроводах (l/d > 100) скорости находятся в пределах:
всасывающие – 0,3-0,8;
сливные – 1,2;
напорные – 2-2,5;
Однако, надо иметь в виду, что в общем случае скорости надо принимать так, чтобы потери давления в гидролиниях не превышали 5-6 % рабочего давления.
Жидкости, применяемые в гидросистемах