Курсовая работа: Расчет и моделирование цифрового фильтра
Рис. 3 Реальная АЧХ цифрового фильтра (на примере ФНЧ).
Математически работа цифрового фильтра во временной области описывается разностным уравнением:
, (1)
где и - - тые отсчеты входного и выходного сигналов фильтра, взятые через интервал ; и – постоянные коэффициенты цифрового фильтра.
Цифровые фильтры принято делить на два класса:
− нерекурсивные фильтры;
− рекурсивные фильтры.
Нерекурсивные фильтры называют еще фильтрами с конечной импульсной характеристикой (КИХ-фильтры), а рекурсивные фильтры - фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры). В иностранной литературе их называют:
− FIR (Finite Impulse Response) – фильтр с конечной импульсной характеристикой;
− IIR (Infinite Impulse Response) – фильтр с бесконечной импульсной характеристикой.
Если в выражении (1) положить коэффициенты , то фильтр, реализующий этот алгоритм, называется нерекурсивным. Его работа описывается уравнением:
, (2)
вычисляющим свертку двух последовательностей: коэффициентов и дискретных отсчетов входного сигнала .
Если хотя бы один коэффициент , то фильтр, реализованный согласно выражения (1), называется рекурсивным. Очевидно, что БИХ-фильтр представляет собой устройство с обратной связью, а КИХ-фильтр - без обратной связи.
Общие сведения по КИХ-фильтрам
Нерекурсивные фильтры работают в соответствии с выражением (2). Раскроем сумму:
(3)
КИХ-фильтр производит взвешенное суммирование (с коэффициентами ) предшествующих отсчетов входного сигнала. Величину называют порядком фильтра, – шаг дискретизации. Структурная схема КИХ-фильтра представлена на рис. 4.
Рис. 4 Структурная схема КИХ-фильтра.
В этом фильтре дискретные выборки из сигнала , задержанные на интервалы , взвешиваются с коэффициентами и суммируются с образованием отклика . Фильтр, представленный на рис. 4 называют еще трансверсальным фильтром. Основными элементами фильтра являются:
− линия задержки с отводами;
− умножителей;
− многовходовый параллельный сумматор.
КИХ-фильтры всегда устойчивы. Форма частотной характеристики КИХ-фильтров слабо чувствительна к точности коэффициентов. Главным преимуществом КИХ-фильтра является линейность его ФЧХ.
Z - преобразование (3):
. (4)
Тогда передаточная характеристика КИХ-фильтра:
. (5)