Курсовая работа: Расчет и проектирование фундаментов в городе Косомольск-на-Амуре
Вывод: исследуемый образец № 3 –песок серый, мелкий, средней плотности, насыщенный водой с Ro = 200 кПа.
2.4 Образец № 4
Образец взят из скважины № 2, глубина отбора – 8 м.
Определяют наименование грунта по числу пластичности.
Число пластичности определяется по формуле (2.12) :
I=41-23=18 – грунт относится к глинам (I>17) в соответствии с табл.Б.11.
Определяют коэффициент пористости по формуле (2.10):
,
Определяют коэффициент консистенции по формуле (2.13):
S= = 1
0 ≤JL ≤0,25 – грунт полутвердый в соответствии с табл.Б.14 [15].
По СНиП 2.02.01-83* «Основания зданий и сооружений» методом двойной интерполяции находят
Вывод: исследуемый образец № 4 –глина коричневая полутвердая с Ro = 260,7 кПа.
2.5 Образец № 5
Образец взят из скважины № 3, глубина отбора – 12 м.
Определяют наименование грунта по числу пластичности.
Число пластичности определяется по формуле (2.12):
I=20-13=7 – грунт относится к супесям (1I7) в соответствии с табл.Б.11[15].
Определяют коэффициент пористости по формуле (2.10):
,
Определяют коэффициент консистенции по формуле (2.13):
S= = 1
0,25 ≤JL ≤0,5 – грунт тугопластичный в соответствии с табл.Б.14.
Определяют расчетное сопротивление по прил.3[8] R=300кПа.
Вывод: исследуемый образец № 5 –супесь тугопластичная серовато-желтая с Ro = 300 кПа.
3 Сбор нагрузок, действующих на фундаменты
Сбор нагрузок производят на грузовую площадь, которую устанавливают в зависимости от статической схемы сооружения. В данном случае конструктивная схема с поперечными несущими стенами, располагаемыми с модульным шагом 6,3 и 3,0 м, двумя продольными железобетонными стенами и плоскими железобетонными перекрытиями, образующими пространственную систему, обеспечивающую сейсмостойкость здания и воспринимающую все вертикальные и горизонтальные нагрузки.