Курсовая работа: Расчет котла

Коллекторы 1 и 12 сварные и состоят из обечаек и двух приварных штампованных днищ. На заднем днище пароводяного коллектора и на обоих днищах водяного коллектора сделаны овальные лазовые отверстия 13, закрываемые изнутри крышками с помощью двух наружных скоб, шпилек и гаек. К стенкам коллекторов приварены штуцера, патрубки и другие элементы для присоединения труб, арматуры и стенок кожуха.

Кожух котла сварной, газоплотный, образован двойными фронтовыми (передней, задней), боковыми и потолочной стенками, выполненными из листового и профильного проката. Наружные 15 и внутренние 16 стенки кожуха образуют межкожуховое пространство (МКП), через которое проходит воздух перед поступлением в топку. Такое устройство стен защищает котельное отделение от проникновения в него продуктов сгорания и уменьшает тепловые потери от наружного охлаждения. Жесткость конструкции кожуха обеспечивается установкой распорных скоб 5, трубных связей 2 и перегородок 4. На внутренних и наружных стенках кожуха имеются окна, плотно закрываемые крышками 14 с помощью задраек 18. Окна служат для доступа к трубным поверхностям нагрева и в МКП. На задних стенках кожуха расположено лазовое отверстие для проникновения внутрь топки.

С целью наблюдения за горением и состоянием кладки в передней и задней стенках кожуха сделаны отверстия 3, соединенные патрубком с головкой специального смотрового устройства. Корпус головки, где находится обойма с двумя синими жаростойкими стеклами, имеет внутреннюю и наружную крышки, защищающие стекла от перегрева из топки и от механических повреждений снаружи. Кирпичная кладка передней 7 и задней стенок в районе топки и частично в районе трубного пучка выполнена из огнеупорных шамотных кирпичей, установленных на слой асбестового картона. Для кладки используют кирпичи: квадратные с центральными и смещенными отверстиями для болтов, фасонные для фурмы 6 и смотровых устройств и трехгранные. В районе топки кирпичи крепят к внутренним стенкам болтами 19, головки которых утапливают в отверстие кирпича, а затем замазывают раствором мертеля.

В районе пучков труб кирпичи крепят на таврах 21 или угольниках 20. Все кирпичи скрепляют между собой раствором шамотного мертеля. Боковые и потолочные стенки, а также передние и задние стенки кожуха, свободные от кирпичной кладки, изолируют слоем асбестового картона, который со стороны газов покрыт листами из нержавеющей стали 12Х18Н10Т. Открытые наружные поверхности коллекторов изолируют совелитовыми плитами, укладываемыми на слой совелитовой подмазки. Плиты обтягивают металлической сеткой и покрывают слоем совелитовой штукатурки. Изоляцию обечаек коллекторов закрывают оцинкованными стальными листами, на днищах пароводяного коллектора ее оклеивают тканью и окрашивают. Торцы водяного коллектора имеют патрубки, на которые устанавливают наружные крышки.

Опоры 8 крепят к переходным стульям 9 болтами и гайками. Одну из опор закрепляют неподвижно, остальные для обеспечения свободы температурных деформаций делают подвижными. За неподвижную обычно выбирают опору, которая в плане располагается ближе к стопорному клапану с целью уменьшения влияния теплового расширения конструкции котла на деформацию главного паропровода. Следующая опора, установленная на одной с ней линии, параллельной оси коллектора, подвижна только в направлении этой линии. Третья опора подвижна в поперечном, а четвертая - в продольном и поперечном направлениях. Подвижность опоры обеспечивается тем, что отверстия под болты делают овальными. На болты всех опор надеты дистанционные втулки, высота которых на 1 мм больше толщины плиты опоры. Переходные стулья приваривают к судовому фундаменту.

На рис. показана схема топливной системы парового котла КАВ 6,37.


Рис. Схема топливной системы парового котла КАВ 6,3 7

Для растопки котла используют дизельное топливо, которое забирается насосом 7 из расходной цистерны 5 через фильтр 6 и подается к топочному устройству 13 через специальный клапан. Давление дизельного топлива поддерживается таким, чтобы обеспечить 20 %-ную нагрузку котла.

Во избежание попадания топлива в топку в случае отказа клапана 11 и при расположении расходной цистерны 5 выше уровня форсунки на трубопроводе дизельного топлива предусмотрен вертикальный участок с предохранительным устройством 8, возвышающимся над цистерной. При отсутствии избыточного давления устройство 8 сообщает топливный трубопровод с атмосферой.

Один из насосов 3 забирает основное топливо (мазут) через фильтр 2 и прокачивает его через топливный блок 4, где осуществляется подогрев топлива. Топливный блок включает секции 22 и 20 подогревателя, фильтр 21, регулятор 9 и датчик вязкости 10. При работе котла датчик вязкости воздействует на регулятор 9, который устанавливает необходимый расход греющего пара на подогреватель и тем самым обеспечивает нужный подогрев топлива. Конденсат греющего пара через конденсатоотводчик 23 направляется на слив. Из топливного блока топливо поступает через регулирующий топливный клапан 18 регулирующего блока 17 к электромагнитному ре-циркуляционному клапану 16. До тех пор, пока вязкость основного топлива не достигнет нужного значения, клапан 16 направляет его в цистерну 1, а в форсунку на горение поступает дизельное топливо. Одновременная подача в форсунку различных топлив исключается.

Как только вязкость основного топлива достигнет нужного значения, происходит автоматическое переключение работы топочного устройства на основное топливо, для распыливания которого через регулятор давления 12 подается пар из пароводяного коллектора котла, а работа насоса 7 и подача воздуха на распыл дизельного топлива прекращаются.

На пути распыливающего пара установлен сепаратор 14, из которого отсепарированная влага направляется на слив. Необходимое соотношение расходов воздуха и топлива обеспечивает регулирующий блок 17, который состоит из регулятора перепада давления топлива 19, регулирующего топливного клапана 18 и клапанов ручного регулирования перепада давления.

При изменении нагрузки котла меняется давление пара и по сигналу из БАУ приводится в действие исполнительный механизм. Последний воздействует на регулирующий топливный клапан 18, изменяющий расход топлива, и привод воздушной заслонки, расположенной в канале подвода воздуха от вентилятора к котлу, устанавливая ее в новое положение, соответствующее изменившемуся расходу топлива.


Рис. Схема питательной системы парового котла КАВ 6,3 7

Для предотвращения попадания топлива в топку при выключенном горении служит быстродействующий запорный клапан 15 с пружиной, закрывающей его при отсутствии давления в топливном трубопроводе.

Во избежание охлаждения подогретого топлива участок трубопровода между топливным блоком 4 и топочным устройством 13 обогревается паром, отбираемым из трубопровода распыливающего пара. Конденсат этого пара отводится в сливной трубопровод от сепаратора.

Схема питательной системы парового котла КАВ 6,3/7 представлена на рис.

Питание котла осуществляется конденсатом из теплого ящика 1, подаваемым одним из питательных насосов 3 по магистрали автоматического или ручного питания через ионообменный фильтр 4. На напорной магистрали автоматического питания установлен клапан 6 одноимпульсного термогидравлического регулятора прямого действия, а на магистрали ручного питания — клапан 7.

Принцип действия одноимпульсного термогидравлического регулятора прямого действия заключается в следующем. В импульсном генераторе 8 имеется герметичная кольцевая полость, образованная наружной и внутренней трубами. Внутренняя труба соединяется с паровым и водяным пространством коллектора, а кольцевая полость — с пространством над мембраной автоматического клапана 6 и заполняется дистиллированной водой, уровень которой несколько выше уровня воды во внутренней трубе. В рабочем состоянии вследствие теплообмена между водой и паром во внутренней трубе и водой в кольцевом пространстве в нем происходит частичное испарение воды и возрастает давление.

При изменении уровня воды в коллекторе, а следовательно и во внутренней трубе, меняется длина ее парового участка; в связи с этим меняется давление в кольцевой (импульсной) полости. Это давление передается мембране, жестко связанной с регулирующим клапаном 6; при этом изменяется проходное сечение клапана и устанавливается соответствующий расход питательной воды.

При переходе с автоматического питания на ручное и обратно нужно переключить манометр давления питательной воды с помощью трехходового крана 5. Количество воды, прошедшее через фильтр 4, фиксируется счетчиком 2. Для регенерации фильтра 4 предусмотрена специальная система.

№п/п Название величины Формулаи численноезначение
1 Заданиенапроектированиеиисходныеданныепопароводяномутракту
1 Полная паропроизводительностьD, кг/с 0,833
2 Давлениевпароводяном коллектореР0 ,МПа 0,8
3 Температура, С
питательнойводы,tп.в, °С 80
Насыщения, ts , °С 170,4
водыпривыходеиз экономайзера, tэк, °С 140
4 Массовоепаросодержаниепри выходеизпароводяного коллектора,x 0,999
5 Энтальпия, кДж/кг
кипящейводыприРн.п,i’ 720,9
сухогопараприРн.пi’’ 2768,4
насыщенногопарапривыходе изпароводяногоколлектора,iн.п i’(1-x)+i”x=2766,35
питательнойводы,iп.в 334,92
привыходеизэкономайзера,iэк 589,5
6 Удельныйобъем, м3/кг
питательнойводыVп.в 0,001030
привыходеиз экономайзера, Vэк 0,001080
кипящейводыприРн.п , V’ 0,001101
сухогопараприРн.п , V’’ 0,000240
насыщенногопараприVн.п V’(1-x)+V”x=0,000240
2 Определениеобъемоввоздухаипродуктовсгорания
1 Маркатоплива Мазут флотский Ф5

Состав горючей смеси, %

2 Углерод , Cг 85,3
Водород,Hг 12,4
Азот+кислород,Nг + Oг 0,3
Летучаясера , Sл г 2
3 Составрабочеймассы, %
Зола ,Ар 0,1
Влага,Wр 1
Углерод,Cр Cр =((100 – Aр - Wр ) / 100) ∙ Cг =84,36
Водород,Hр Hр =((100 – Aр – Wр ) / 100) ∙ Hг =12,26
Азот+кислород,Nр + Oр Nр +Oр =((100–Aр –Wр )/100)∙(Nг + Oг ) =0,297
Летучаясера,Sл р Sл р =((100 – Aр – Wр ) / 100) ∙ Sл р =1,98
4 НизшаятеплотасгоранияQн р , кДж/кг 40900
5 Коэффициентизбыткавоздуха,α 1,1
6 Расходраспыливающегопара, Gф, кг/кг 0,04
7 Влагосодержание атмосферноговоздуха,d, кг/кг 0,01
8 Объемтеоретически необходимогоколичества воздуха,V0 , м3 /кг V0 = 0,0889( Cр + 0,375∙Sл р ) + 0,267∙Hр – 0,0333∙Oр = 0,0889(84,36+0,375∙1,98)+0,267∙12,26-0,0333∙0,297= 10,83
9 Суммарныйобъемуглекислого исернистогогазов,VRO 2 , м3 /кг VRO 2 = 0,0187∙Kр =0,0187*(Cр + 0,375∙Sл р )= 0,0187(84,36+0,375∙1,98)=1,59
10 Объем, м3 /кг
водяныхпаров,\/н2 о VH2O =0,111∙ Hр + 0,0124∙ Wр + 1,24∙Gф + 1,6∙d∙α∙ V0 =1,612

Водяныхпаровпри α =1, V0 H 2 O

V0 H 2 O = 0,111∙ Hр + 0,0124∙Wр + 1,24∙Gф + 1,6∙d∙ V0 =1,595
Азота при α = 1, V0 N 2 V0 N 2 = 0,79∙ V0 = 0,79∙10,83=8,55
газов (продуктовсгорания) при α = 1 V0 Г = VRO 2 + V0 N 2 + V0 H 2 O =11,735
11 действительныйобъемгазов,VГ , М/КГ VГ = VRO 2 + V0 N 2 + V0 H 2 O + (1 + 1,6∙d)∙(α – 1)∙V0 = =12,835
12 Объемдолипродуктовсгорания
суммыуглекислогои сернистогогазовrRO 2 rRO 2 = VRO 2 / VГ =0,124
водяныхпаров,rH 2 O rH 2 O = VH 2 O / VГ = 0,126
Суммытрехатомныхгазов,rП rП = rRO 2 + rH 2 O = 0,249

3. Построение диаграммы IГ – t .

ϑ,°С VRO 2 =1,59 м3 /кг V0 N 2 =8,55 м3 /кг V0 H 2 O =1,595м3 /кг I0 Г кДж/кг V0 =10,83 м3 /кг I0 В кДж/кг IГ кДж/кг
C(RO2) C(RO2)* V(RO2) C(H2O) C(H2O)* V(H2O) C(N2) C(N2)*V(N2) Cв*Vo
0 1,6 2,544 1,30 11,115 1,5 2,3925 0 1,32 14,2956 0 0
200 1,79 2,8461 1,30 11,115 1,52 2,4244 3277,1 1,33 14,4039 2880,78 3565,178
400 1,93 3,0687 1,32 11,286 1,57 2,50415 6743,54 1,35 14,6205 5848,2 7328,36
600 2,04 3,2436 1,34 11,457 1,62 2,5839 10370,7 1,38 14,9454 8967,24 11267,424
800 2,12 3,3708 1,38 11,799 1,67 2,66365 14266,76 1,41 15,2703 12216,24 15488,384
1000 2,2 3,498 1,40 11,97 1,72 2,7434 18211,4 1,44 15,5952 15595,2 19770,92
1200 2,25 3,5775 1,42 12,141 1,77 2,82315 22249,98 1,46 15,8118 18974,16 24147,396
1400 2,31 3,6729 1,44 12,312 1,83 2,91885 26465,25 1,48 16,0284 22439,76 28709,226
1600 2,35 3,7365 1,46 12,483 1,87 2,98265 30723,44 1,50 16,245 25992 33322,64
1800 2,39 3,8001 1,47 12,5685 1,92 3,0624 34975,8 1,52 16,4616 29630,88 37938,888
2000 2,42 3,8478 1,49 12,7395 1,96 3,1262 39427 1,54 16,6782 33356,4 42762,64
2200 2,45 3,8955 1,50 12,825 2 3,19 43803,1 1,55 16,7865 36930,3 47496,13

№п/п Название величины Формулаи численноезначение
4. Предварительныйтепловойбалансиопределение расходатоплива
1 Относительнаятепловаяпотеря:
отхимическойнеполноты сгорания ,q3 0,005
отнаружногоохлаждения, q5 0,01
суходящимигазами,q2 q2 = 1 – (ηк + q3 + q5 ) = 1 – ( 0,86 + 0,005 + 0,01) = 0,125
2 Температура, °С
холодноговоздуха,tх.в 30
подогреватоплива,tтл 86
3 Теплоемкостьпри tх.в кДж/( м3 *К)
сухоговоздуха,Сc.в 1,3
водяныхпаров,Сн2о 1,5
4 Энтальпия, кДж/кг
Холодноговоздуха,Iх.в Iх.в. =α∙V0 (cс.в. + 1,6∙d∙cH 2 O )tх.в. = 1,1∙10,83∙(1,3 + 1,6∙0,01∙1,5)∙30 =473,18
Физическаятеплота топлива,iтл

iтл = cтл ∙ tтл =1,955∙86=168,13

cтл = 1,74 + 0,0025∙ tтл = 1,74 + 0,0025∙ 86=1,955

Энтальпия распыливающегопара,iф , кДж/кг 2800
5 Теплотавносимая распыливающимпаром Qф , кДж/кг Qф = Gф (iф – 2500) = 0,04(2800 – 2500) =12
6 Располагаемаятеплота Qр р , кДж/кг Qр р = Qн р + iтл + Qф = 40900 + 168,13 +12 =41080,13
7 Энтальпия уходящих газов, кДж/кг Iух.г. = q2 ∙ Qн р + Iх.в. + iтл + Qф = 0,125∙40,9∙103 +473,18+ 168,13+ 12 =5766
8 Температура уходящих газов tух.г., ˚С tух.г. = 320
9 Тепловаяпотеряс уходящимигазами ,Q2 ,кДж/кг Q2 =Iух - Iх.в=5766-473,18=5293
10 КПДкотла, ηк =q1 0,86
11 Коэффициентсохранения теплоты, φ φ = 1 – q5 / (q1 + q5 ) = 1 – 0,01/ (0,86 + 0,01) =0,988
12 Расчетныйрасход топливаВ, кг/с B = D(iн.п. - iп.в. ) / η∙ Qр р = 0,833(2766,35–334,92)/0,86∙ ∙41080,13 =0,057
5 Данныекрасчетутеплообменавтопкеипостроению еекомпоновочногоэскиза
1 Удельнаямощностьтопки, qт ,кВт/ м3 1650
2 Объемтопки, \/т, м3 Vт = B∙ Qр р / qт = 0,057∙41080,13 / 1650 =1,4
3 Числофорсунок, N 2
4 Расчетная производительность однойфорсунки,Вф,кг/с Bф = B / N = 0,028
5 Расчетнаядлинатопки, Lт ,м Lт = A*( Bф )0,5 = 6*(0,028)0,5 =1,004
6 Расходвоздухачерез отверстиефурмы ,Vф, м3 Vф = [α∙V0 ∙Bф (tх.в. + 273)] / 273 = [1,1∙10,83∙0,028(30 + +273)] / 273 =0,3
7 Скоростьвоздухав отверстиефурмы,wф ,м/с 40
8 Живоесечениефурмы,f , м2 f = Vф / wф = 0,3 / 40 =0,0075
9 Расчетныйдиаметр фурмы,dф =,м dф =( f /0,785) 0,5 =0,09
10 Принятыйдиаметр фурмы,dф,м Округляем до 0,1
11 Принятоеживоесечение фурмы,f, м2 f = 0,785∙ dф 2 = 0,785∙0,12 =0,00785
12 Действительнаяскорость воздухавотверстие фурмы,wф ,м/с wф = Vф / f =0,3/0,00785=38,21
13 Пароваянагрузказеркала испарения,Rз.и. ,кг/(м*с) 0,9
14 Внутреннийдиаметр,м
пароводяногоколлектора, dп.к. dп.к. = D / (Rз.и. ∙ Lт ) = 0,833 / (0,9∙1,004) =0,92
водяногоколлектора,dв.к. 0,5
15 Площадьпоперечного сечениятопки,Fт , м2 Fт = Vт / Lт =1,4 / 1,004 =1,39
16 Построениеэскизатопки уточнениеразмеровтопки, (Lт,Fт)

Lт =1,08 м

К-во Просмотров: 840
Бесплатно скачать Курсовая работа: Расчет котла