Курсовая работа: Расчет охладителя конденсата пара
1. Краткое описание конструкции аппарата
Установка охладителя конденсата греющего пара какого-либо подогревателя, приводит к уменьшению количества отбираемого из турбины пара на этот подогреватель и соответствующему увеличению расхода пара из отбора с меньшим давлением. Это несколько увеличивает тепловую экономичность установки. С другой стороны, увеличивается стоимость устанавливаемого оборудования. Таким образом, определение поверхности нагрева охладителя (минимальной разности температур теплообменивающихся сред), как, впрочем, и поверхности нагрева собственно подогревателя, является технико-экономической задачей.
Охладители конденсата предназначены так же для уменьшения вскипания в трубопроводах (за регулирующим клапаном), по которым конденсат подогревателя более высокого давления перепускается в подогреватель с более низким давлением.
Охладители конденсата чаще всего устанавливаются по ходу обогреваемой воды перед подогревателем, конденсат греющего пара которого в нём охлаждается. В ряде случаев через охладитель дренажа пропускают не весь поток питательной воды; при этом другая часть байпасируется через перепускную диафрагму, сопротивление которой рассчитывается по необходимому расходу.
Горизонтальные кожухотрубчатые конденсаторы имеют широкое применение, особенно в установках средней и крупной производительности.
Схема теплообменного аппарата приведена на рисунке 1.1. горизонтальный, двухходовой по конденсату пара и воды на ХВО. Движение потоков в охладителе применяется противоточное. Конденсата движется в межтрубном пространстве, вода на ХВО-в трубном.
Горячий агент (конденсат) поступает в обечайку (1) через входной патрубок (9) и заполняет межтрубное пространство. Выводится конденсата через выходной патрубок(10).Вода на ХВО входит в водяную камеру (4) через входной патрубок (7), проходит по теплообменным трубкам (3), совершает поворот и возвращается обратно в водяную камеру и выводится через выходной патрубок (8).Необходимое число ходов в аппарате создаётся за счёт перегородки в водяной камере (6) и перегородки в межтрубном пространстве (5).
2. Расчет недостающих параметров в аппарате
Определяем теплофизические свойства теплоносителей по их средним температурам.
Средняя температура греющего теплоносителя:
;
где o C находим по таблице 12 [1] при Р=0,4 МПа;
o C,
o C.
Средняя температура нагреваемого теплоносителя:
;
где o C;
o C,
o C.
По таблице 11 [1] определяем теплофизические свойства теплоносителей и сводим их в таблицу 1.
Таблица 1. Теплофизические свойства теплоносителей
Средняя температура, t, o C | Плотность, ρ, кг/м3 | Теплоемкость, Cp , кДж/(кг K) | Коэффициент теплопроводности, λ102 , Вт/(мК) | Коэффициент кинематической вязкости, ν106 , м2 /с | Число Прандтля, Pr | |
Греющий теплоноситель | 106,81 | 953,96 | 4, 229 | 68,4 | 0,28 | 1,66 |
Нагреваемый теплоноситель | 20 | 998,2 | 4,183 | 59,9 | 1,006 | 7,02 |
Недостающие параметры определяем из уравнения теплового баланса:
,
где Q – тепловая нагрузка аппарата (тепловая производительность), кВт;
G1 - расход греющего теплоносителя (конденсат пара), кг/с;
G2 – расход нагреваемого теплоносителя (вода на ХВО), кг/с;
, - теплоемкости греющего и нагреваемого теплоносителей соответственно, взятые по средним температурам, кДж/(кг K);
, - температуры на входе и выходе из аппарата греющего теплоносителя соответственно, o C;
,- температуры на входе и выходе из аппарата нагреваемого теплоносителя соответственно, o C;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--