Курсовая работа: Расчет оптимального кода по методике Шеннона Фано
pk = ∑ pn /(k – k + 1).
n=1
Сумма всех вероятностей должна быть равой единице, поэтому:
pi
рi = -----
k
∑ pj
j=1
Определить, насколько недогружены символы во втором случае.
1.2. Число символов алфавита = m (номер варианта задания). Вероятности появления символов равны соответственно
р1 = 0,15; p2 = p1 /(k-1); p3 = (p1 + p2 )/(k-2) ...
k-1
pk = ∑ pn /(k – k + 1).
n=1
Длительности символов τ1 = 1 сек; τ2 = 2 сек;
τk = τk -1 + 1.
Чему равна скорость передачи сообщений, составленных из таких символов?
Определить количество информации на символ сообщения, составленного из этого алфавита:
а) если символы алфавита встречаются с равными вероятностями;
Определить, насколько недогружены символы во втором случае.
1.3. Сообщения составляются из алфавита с числом символов = m. Вероятность появления символов алфавита равна соответственно:
р1 = 0,15; p2 = p1 /(k-1); p3 = (p1 + p2 )/(k-2) ...
k-1
pk = ∑ pn /(k – k + 1).
n=1
Найти избыточность сообщений, составленных из данного алфавита.
Построить оптимальный код сообщения.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
КОЛИЧЕСТВЕННАЯ ОЦЕНКА ИНФОРМАЦИИ
Общее число неповторяющихся сообщений, которое может быть составлено из алфавита m путем комбинирования по n символов в сообщении,
N = mn