Курсовая работа: Расчет плазмотрона и определение его характеристик
1 - G = 1,5 ∙ 10-3; 2 – G = 1,95 ∙ 10-3; 3 – G = 1,05 ∙ 10-3 кг/с
Рисунок 3.1 – Вольт-амперные характеристики плазмотрона
1 - G = 1,5 ∙ 10-3; 2 – G = 1,95 ∙ 10-3 ; 3 – G = 1,05 ∙ 10-3 кг/с
Рисунок 3.2 – Зависимость теплового КПД плазмотрона от силы тока
1 - G = 1,5 ∙ 10-3; 2 – G = 1, 05 ∙ 10-3 ; 3 – G = 1, 95 ∙ 10-3 кг/с
Рисунок 3.3 – Зависимость теплового потока в анод от силы тока
1 - G = 1,5 ∙ 10-3; 2 – G = 1, 05 ∙ 10-3 ; 3 – G = 1, 95 ∙ 10-3 кг/с
Рисунок 3.4 – Зависимость теплового потока в катод от силы тока.
4 ВЫБОР ИСТОЧНИКА ПИТАНИЯ ПЛАЗМОТРОНА
В момент запуска плазмотрона главную роль играет источник питания, который должен обеспечивать не только устойчивые рабочие вольт-амперные характеристики плазмотрона, но и предоставить достаточное напряжение для пробоя, необходимого для запуска плазмотрона. Поэтому напряжение холостого хода источника питания должно быть больше рабочего напряжения дуги плазмотрона. Как было показано выше, рабочее напряжение на дуге плазмотрона 173 В, сила тока – 124 А. Принимаем коэффициент запаса по напряжению равным 1,3. Тогда напряжение холостого хода источника питания составит:
Наиболее подходящим является источник питания, выпускаемый Запорожским заводом “Преобразователь” ДЕЗ-315/230. Это тиристорный источник питания, который может быть задан на любую мощность и обеспечивать высокий КПД, хорошую регулируемость в широком диапазоне, высокую степень стабилизации заданного тока. Выбранный нами источник питания обеспечивает следующие показатели: номинальное напряжение – 230 В, номинальная сила тока – 315 А, номинальная мощность – 72 кВт [5].
5 ТЕХНОЛОГИЧЕСКОЕ ПРИМЕНЕНИЕ ПЛАЗМОТРОНА
На современном этапе развития науки и техники во многих случаях существует потребность в обеспечении достаточно высоких и стабильных температур. Наиболее удобно использовать для их получения плазменное оборудование. Рассчитанный нами плазмотрон может быть использован для самых различных технологических процессов.
Плазмотрон можно использовать для поверхностной плазменной обработки металлов, что особенно важно при обработке закаливающихся сталей, для плазменного напыления.
Для напыления применяют дугу косвенного действия.
Плазменным напылением с соответствующим подбором порошковых или проволочных материалов можно создавать покрытия с заданными эксплуатационными свойствами: износостойкие, антикоррозионные, жаростойкие, электроизоляционные.
Преимуществами плазменного напыления являются высокая однородность, прочность сцепления с основой и высокая производительность, достигаемые за счет высокой скорости частиц, а также отсутствие перемешивания материалов покрытия и основы.
При напылении небольших деталей из-за низкого коэффициента использования материалов способ не эффективен.
В установках плазменного напыления используется преимущественно азот и другой наиболее доступный и дешевый газ.
Хорошее качество покрытий достигается при напылении в среде аргона в смеси с водородом.
Большинство плазмотронов для напыления работает на постоянном токе прямой полярности, так как имеют при этом высокий КПД использования по мощности.
Ещё одним возможным применением плазмотрона является плазменная обработка поверхности строительных материалов. Она заключается в оплавлении и напылении лицевой поверхности. В этом случае плазменная струя является не только источником тепловой энергии, но и обеспечивает протекание различных физико-химических процессов в контактной зоне. Например, при обработке бетона его поверхность приобретает светло-зелёную окраску. Для получения поверхности другого цвета в плазменную струю подают соответствующие окислы металлов, которые и напыляются на бетон [2].
6 НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА СТУДЕНТА
В научно-исследовательской работе студента нужно исследовать изменение ресурса работы катода плазмотрона при условии замены цилиндрического полого катода на стержневой.