Курсовая работа: Расчет преобразователя частоты
По способу получения fпр :
- ПЧ с верхней настройкой гетеродина
fпр = fг − fс , т.е. fг > fс
В данном случае после преобразования положение боковых полос сигнала меняется, т.е. нижняя становится верхней и наоборот (инвертирующее преобразование частоты).
- ПЧ с нижней настройкой гетеродина.
fпр = fс − fг , т.е.fг < fс
В данном случае положение боковых полос сигнала относительно несущей частоты после преобразования не меняется (неинвертирующее преобразование частоты).
По виду нелинейного элемента:
- диодные ПЧ;
- транзисторные ПЧ;
- интегральные ПЧ.
По числу нелинейных элементов в ПЧ:
- простые (один НЭ);
- балансные (два НЭ);
- кольцевые (четыре НЭ).
2. ВИДЫ СХЕМ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ1
Известно большое количество различных схем преобразователей частоты, каждая из которых может выбираться в зависимости от требований к проектируемому радиоприемнику.
Общими требованиями к преобразователям частоты являются: возможно, больший коэффициент передачи при преобразовании; минимальный уровень шумов, вносимых преобразователем в тракт приемника; высокая стабильность работы гетеродина; минимальное просачивание энергии гетеродина в антенну.
В качестве смесительных элементов преобразователей частоты в современных приемниках километровых, гектометровых, дециметровых и метровых (КГД и М) волн применяются электронные приборы с резистивной и реактивной нелинейными проводимостями. К первой группе приборов относятся транзисторы (биполярные и полевые) и различные высокочастотные диоды, работающие на прямой ветви вольт-амперной характеристики, а ко второй — параметрические диоды. В последних используется вольт-фарадная характеристика.
Преобразователи частоты на биполярных транзисторах могут выполняться на одном триоде, т. е. с совмещенным гетеродином, и на двух триодах, в которых один выполняет функции смесителя, а другой — гетеродина. В случае использования автономного гетеродина легче подобрать оптимальные режимы работы смесителя и гетеродина, что определяет использование преобразователей с отдельным гетеродином в приемниках повышенного класса.
Наиболее распространенными схемами преобразователей частоты на биполярных транзисторах являются схемы, в которых принимаемый сигнал подается в цепь базы, т. е. когда для напряжения сигнала схема смесителя является схемой с общим эмиттером.
В этом случае, так же как и вусилительных схемах, получается больший коэффициент передачи преобразователя.
Напряжение гетеродина может подаваться как в цепь базы (смеситель по отношению к этому напряжению работает по схеме с общим эмиттером), так и в цепь эмиттера, что соответствует схеме с общей базой. При подаче напряжения гетеродина в цепь базы требуется при прочих равных условиях меньшая мощность, так как входное сопротивление схемы с общим эмиттером больше, чем схемы с общей базой. Однако в первом случае увеличивается взаимосвязь между входным контуром преобразователя (сигнальным) и контуром гетеродина. Известно, что такая взаимосвязь ухудшает стабильность работы гетеродина, затрудняет настройку контуров при их сопряжении, увеличивает просачивание энергии гетеродина в антенну. Когда напряжение гетеродина подается в цепь базы, то связь между гетеродином и смесителем приходится осуществлять через конденсатор с весьма небольшой емкостью.
При подаче напряжения гетеродина в цепь эмиттера не требуется непосредственно связывать между собой контуры гетеродина и сигнала. Однако между этими контурами существует паразитная связь за счет емкости Сэ .в смесительного транзистора. Другим недостатком схемы является влияние внутреннего сопротивления транзистора смесителя на частоту гетеродина. Последнее особенно нежелательно при регулировании усиления смесителя с помощью системы АРУ. Помимо этого, в такой схеме с повышением рабочей частоты увеличивается отрицательная обратная связь по току сигнала, снижающая коэффициент передачи преобразовательного каскада. Перечисленные, недостатки схемы возрастают с увеличением рабочей частоты.
При использовании любой схемы преобразователя частоты уменьшение взаимного влияния настроек гетеродинного и сигнального контуров может быть достигнуто: увеличением промежуточной частоты, т. е. увеличением разности частот гетеродина и сигнала; переходом к использованию высших гармоник частоты гетеродина; введением буферного каскада между гетеродином исмесителем. Последнее особенно удобно при работе на гармониках, когда буферный каскад используется врежиме умножения.
Следует заметить, что на первом этапе развития транзисторной техники биполярные транзисторы широко использовались как смесители. Однако они имеют вольт-амперную характеристику, далекую от идеальной (квадратичной), и в настоящее время вытесняются полевыми транзисторами.
Полевые транзисторы имеют вольт-амперную характеристику, близкую к квадратичной кривой, поэтому крутизна характеристики их изменяется в зависимости от напряжения на затворе по закону, близкому к линейному. Линейная зависимость крутизны полевого транзистора позволяет уменьшить нелинейные искажения принимаемого сигнала. Как показывают исследования, полевые транзисторы обеспечивают коэффициент перекрестной модуляции на 50 дБ ниже, чем при использовании биполярных транзисторов. Кроме того, полевые транзисторы позволяют обеспечить более низкий коэффициент, шума. Их входное сопротивление значительно выше, чем у биполярных.
Если используют полевые транзисторы в качестве смесителей, то они работают обычно с отдельным гетеродином. Напряжение сигнала подается, как правило, на затвор, а напряжение гетеродина может быть подано как на затвор, так и на исток. Влияние способов подачи напряжения гетеродина здесь такое же, как и в преобразователях на биполярных транзисторах.