Курсовая работа: Расчет тарельчатой ректификационной колонны

Теплообменные аппараты классифицируются по различным признакам. Например, по способу передачи тепла их можно разделить на две группы: поверхностные (рекуперативные и регенеративные) и смешения. Требования к промышленным теплообменным аппаратам в зависимости от конкретных условий применения весьма разнообразны. Основными требованиями являются: обеспечение наиболее высокого коэффициента теплопередачи при возможно меньшем гидравлическом сопротивлении; компактность и наименьший расход материалов, надежность и герметичность в сочетании с разборностью и доступностью поверхности теплообмена для механической очистки её от загрязнений; унификация узлов и деталей; технологичность механизированного изготовления широких рядов поверхностей теплообмена для различного диапазона рабочих температур, давлений и т. д.

При созданиях новых, более эффективных теплообменных аппаратов стремятся, во-первых, уменьшить удельные затраты материалов, труда, средств и затрачиваемый при работе энергии по сравнению с теми же показателями существующих теплообменников. Удельными затратами для теплообменных аппаратов называют затраты, отнесенные к тепловой производительности в заданных условиях, во-вторых, повысить интенсивность и эффективность работы аппарата. Интенсивностью процесса или удельной тепловой производительностью теплообменного аппарата называется количество теплоты, передаваемого в единицу времени через единицу поверхности теплообмена при заданном тепловом режиме.

Интенсивность процесса теплообмена характеризуется коэффициентом теплопередачи k. На интенсивность и эффективность влияют также форма поверхности теплообмена; эквивалентный диаметр и компоновка каналов, обеспечивающие оптимальные скорости движения сред; средний температурный напор; наличие турбулизирующих элементов в каналах; оребрение и т. д. Кроме конструктивных методов интенсификации процесса теплообмена существует режимные методы, связанные с изменением гидродинамических параметров и режима течения жидкости у поверхности теплообмена. Режимные методы включают: подвод колебаний к поверхности теплообмена, создание пульсации потоков, вдувание газа в поток либо отсос рабочей среды через пористую стенку, наложении электрических или магнитных полей на поток, предотвращения загрязнений поверхности теплообмена путем сильно турбулизации потока и т. д.


1 ТЕПЛООБМЕННЫЕ АППАРАТЫ

1.1 Теплообменники типа «труба в трубе»

При небольших тепловых нагрузках, когда требуемая поверхность теплообмена не превышает 20—30 м2 , целесообразно применение теплообменников типа «труба в трубе». Такие теплообменники изготовляют следующих типов: 1) неразборные однопоточные малогабаритные; 2) разборные одно- и двухпоточные малогабаритные; 3) разборные однопоточные; 4) неразборные однопоточные; 5) разборные многопоточные.

Неразборный теплообменник типа «труба в трубе» изображен на рис. 1. Эти теплообменники могут иметь один ход или несколько (обычно четное число) ходов.

Рнс. 1.1 Неразборный теплообменник типа «труба в трубе»:

/ — теплообменная труба; 2 — кожуховая труба; 3 — калач

Рис. 1.2. Разборный однопоточный малогабаритный (dH до 57 мм) теплообменник типа «труба в трубе»:

/ — теплообменная труба; 2 — распределительная камера для наружного теплоносителя; 3 — кожуховая труба; 4 — крышка

Конструкции разборных теплообменников показаны по рис. 1.2 и 1.3. Однопоточный малогабаритный теплообменник (рис.1.2) имеет распределительную камеру для наружного теплоносителя, разделенную на две зоны продольной перегородкой. В крышке размещен калач, соединяющий теплообменные трубы. Кожуховые трубы крепятся в трубных решетках, теплообменные трубы герметизируются с помощью сальниковых уплотнений. Однопоточные разборные теплообменники из труб большого диаметра (более 57 мм) выполняются без распределительной камеры, так как штуцер для подвода наружного теплоносителя можно приварить непосредственно к кожуховым трубам.

Двухпоточный разборный теплообменник (рис.1.3) имеет две распределительные камеры, а в крышке размещены два калача. Поверхность теплообмена и проходные сечения для теплоносителей при прочих равных условиях в два раза больше, чем в однопоточном теплообменнике. Многопоточные теплообменники типа «труба в трубе» принципиально не отличаются от двухпоточных. Поверхности теплообмена и основные параметры нормализованных теплообменников типа «труба в трубе» приведены в табл. 1.1 и 1.2.

Рис. 1.3. Разборный двухпоточный малогабаритный (dн до 57 мм) теплообменник типа «труба в трубе»:

1,2 — распределительные камеры соответственно для внутреннего и наружного теплоносителя; 3 — кожуховая труба; 4 — теплообменная груба; 5 — крышка

Таблица 1.1. Поверхности теплообмена и основные параметры неразборных и разборных однопоточных и двухпоточных теплообменников типа «труба в трубе»

Число Поверхность теплообмена (в t,
Диаметр теплооб- Число парал- теплообмен-ных труб в по

наружному диаметру

TDV6, М

при длине Диаметр ** труб
менных лельных одном кожуха, мм
труб, мм потоков анпарате, шт. 1,5 3,0 4,5 6,0 9,0 12.0
25X3 1 1* 0,12 0,24 0,36 0,48 57X4
1 2 0,24 0,48 0,72 0,96 __ __
2 4 0,48 0,96 1,44 1.92
38X3,5 1 I* 0,18 0,36 0,54 0,72 57X4; 76X4;
2 2 0,36 0.72 1,08 1,44 89X5
2 4 0,72 1,44 2,16 2,88 __ __
48X4 1 1* 0,23 0,45 0,68 0,90 __ __ 76X4; 89X5;
1 2 0,46 0,90 1,36 1,80 108x4
2 4 0,92 1,80 2,72 3.60 __ __
57X4 1 1* 0,27 0,54 0,81 1,08 89X5; 108X4
1 2 0,54 1,08 1,62 2,16 __ __
2 4 1,08 2,16 3,24 4,32 __ __
76X4 1 1* 1.43 2,14 2,86 108X4; 133X4
2 2,14 2,86 4,28
89X5 1 1* 1,68 2,52 3,36 133X4; 159X4,5
2 2,52 3,36 5,04
108X4 1 1* 2.03 3,05 4,06 159X4,5; 219X6
2 __ 3,05 4,06 6,10 ---
133X4 1 1* 2,50 3,75 5,0 219X6
2 3,76 5,0 7,50
159X4,5 1 1* __ 3,0 4,5 6,0 219x6
2 4,5 6,0 9,0

* Относится к одному ходу неразборных теплообменников.

** Толщины труб указаны для условных давлений не выше 1,6 МПа.

Таблица 1.2. Поверхности теплообмена и основные параметры разборных многопоточных теплообменников типа «труба в трубе»*

Число

параллель-ных

потоков

Поверхность теплообмена (м2 )

при длине труб, м

Площадь сечений потоков 104 м2
Число
труб в
одном внутри в кольцевых
аппарате, шт. 3,0 6,0 9,0 тепло-обменных зазорах межтрубного
труб пространства
3 6 3 6 38 92
5 10 5 10 --- 63 154
7 14 --- 14 21 88 216
12 24 24 36 151 371
22 44 44 66 277 680

К-во Просмотров: 416
Бесплатно скачать Курсовая работа: Расчет тарельчатой ректификационной колонны