Курсовая работа: Расчет тепломагистрали

Шум

Сигнал

Зондирующий импульс


Рисунок 3.1. Эталонная осциллограмма «незашумленного» сигнала.

Рабочая полуволна поппппппппооопопполуволнаполуволна

Уровень компаратора

Шум


Шум

Шум

??????? 3.2. ????????????? ???????, ??????????? ??? ???????.

На рисунке 3.1 представлена осциллограмма сигнала расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР», полученная при измерении расхода на трубопроводах с чистой внутренней поверхностью, без отложений. На графике присутствуют две группы сигналов:

- зондирующий импульс, посылаемый излучателем расходомера;

- отраженный сигнал, характеризующий величину расхода жидкости.

На рисунке 3.2 представлена осциллограмма сигнала расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР», полученная при измерении расхода на трубопроводах тепломагистрали №2 тепловых сетей поселка Инской. На графике хорошо заметны:

- зондирующий импульс, посылаемый излучателем расходомера;

- отраженный сигнал, характеризующий величину расхода жидкости;

- импульсы «шума».

Импульсы «шума» появляются в случаях:

- отложений на внутренних стенках труб теплосетей,

- появления коррозии внутренних стенок труб теплосетей,

- наличия мелких внутренних дефектов стенки трубы.

Конкретизировать причины возникновения «шума» на осциллограмме можно вскрыв трубопроводы в неотопительный период.

Рисунок 3.3. Осциллограммы сигналов расходомера «ВЗЛЕТ ПР»

4. Разработка мероприятий по уменьшению потерь давления в тепломагистрали №2

Отложения на стенках устройств осадка в виде твердого и трудноудаляемого слоя из-за содержания в воде минеральных солей (преимущественно магния и кальция) – наиболее распространенная проблема, с которой сталкиваются в промышленности и в быту. В результате сужения внутреннего диаметра труб и уменьшения теплопроводности ухудшаются условия теплообмена. С течением времени энергетические потери могут составлять 60%.

Проблемы, связанные с образованием накипи решаются с использованием как химических, так и физических (безреагентных) методов. Использование химического метода связано с высокими материальными затратами и проблемами утилизации используемых в процессе чистки реагентов (чаще всего кислот). Из физических методов практическое применение получили магнитный, электромагнитный, ультразвуковой методы обработки воды.

Впервые широко начали применять магнитную обработку воды (МОВ) для предотвращения накипеобразования около 50 лет назад в Бельгии. С тех пор этот метод нашел широкое применение во многих странах мира, в том числе таких передовых, как Япония, США, Германия и др. В СССР состоялись 4 научно-практические конференции по использованию этого метода в различных отраслях народного хозяйства, причем не только для предотвращения накипи. До перестроечного периода Московским заводом им. Войкова выпущено более 500 000 аппаратов для магнитной обработки воды. Последние 10-15 лет использование этого метода существенно сократилось из-за отсутствия финансирования у потребителей, закрытия Московского завода им. Войкова по экологическим причинам. Однако последние 2-3 года началось оживление в этом направлении, связанное с ростом производства в стране, существенным повышением цен на химические реагенты, которые используются для умягчения воды, созданием высокоэнергетических магнитов, на порядок превосходящих по своим свойствам ранее применявшиеся для этих целей.

Разработанная гидромагнитная система (ГМС) основана на циклическом воздействии на воду, подаваемую в теплообменные аппараты магнитным полем заданной конфигурации, создаваемым высокоэнергетическими магнитами типа Sm-Zr-Fe-Co-Cu (до 600К) и Nd-R-Fe-Co-Cu (до 450 К). Конструктивно ГМС состоят, как правило, из корпуса на основе магнитного материала, служащего магнитопроводом, и магнитного элемента. Магнитный элемент представляет собой тонкостенную трубу из стали, внутри которой расположены определенным образом ориентированные постоянные магниты и полюсные элементы. На концах трубы расположены конусные наконечники, снабженные центрирующими элементами, соединенные с помощью аргонно-дуговой сварки. Наконечники и центрирующие элементы также выполнены из нержавеющей стали. Такое исполнение магнитного элемента, а именно, с использованием высокоэнергетических магнитов, которые сохраняют свои магнитные свойства неограниченно долгое время, если их не перегревать выше допустимой температуры и оболочки из нержавеющей стали, позволяют увеличить ресурс работы до 20 лет и более. Магнитный элемент расположен внутри, как правило, цилиндрического корпуса с кольцевым зазором, площадь поперечного сечения которого не меньше площади проходного сечения подводящего и отводящего трубопроводов, что не приводит к сколько-нибудь существенному падению давления воды на выходе ГМС.

Под действием магнитного поля в рабочем объеме изменяются физические свойства воды, протекающей через гидромагнитную систему, содержащиеся в ней силикаты, магниевые и кальциевые соли теряют способность формироваться в виде плотного камня и выделяются (особенно после подогрева) в виде легко удаляемого шлама, обычно удаляемого потоком воды и скапливающегося в грязевиках или отстойниках. Кроме того, обработанная таким образом вода разбивает и удаляет уже отложившуюся накипь и препятствует в дальнейшем ее образованию. Оптимальный интервал скоростей движения потока для ГМС составляет 0,5 ÷ 4,0 м/с.

ГМС могут быть установлены как в промышленных, так и в бытовых условиях: в магистралях, подающих воду в водопроводные сети горячей и холодной воды в доме, бойлеры, проточные водонагреватели, паровые и водяные котлы, системы охлаждения различного технологического оборудования (компрессорные станции, мощные электрические машины, термическое оборудование), стиральные и посудомоечные машины. Хотя ГМС и рассчитаны на расход воды от 0,08 до 2700 м3 /час соответственно на трубопроводы диаметром 15-500 мм.

К-во Просмотров: 513
Бесплатно скачать Курсовая работа: Расчет тепломагистрали