Курсовая работа: Расчет валов
Решение.
При действии нагрузок на вал в разных плоскостях их раскладывают на две взаимно перпендикулярные плоскости, за одну из которых принимается плоскость действия одной из сил.
Вертикальная плоскость.
;
реакции определены, верно
Определяются изгибающие моменты в вертикальной плоскости
кНмм, кНммкНмм
кНмм
кНмм.
Строится эпюра .
Горизонтальная плоскость.
;
Н.
Определяются изгибающие моменты в горизонтальной плоскости
кНмм, кНмм.
Строится эпюра .
Для определения суммарного изгибающего момента складывают геометрически изгибающие моменты МВ и МГ во взаимно перпендикулярных плоскостях по формуле
Максимальный суммарный изгибающий момент
кНмм.
кНмм.
Строится эпюра .
Опасное сечение определяется эпюрами моментов, размерами сечений вала и концентрацией напряжений. По размеру сечения вала опасное сечение выбирается возле шестерни. По эпюре суммарного момента определяется момент в опасном сечении, h=14 мм:
кНмм.
Окончательно диаметр вала в опасном сечении определяется по эквивалентному моменту, который равен геометрической сумме суммарного изгибающего и крутящего момента по третьей теории прочности.
кНмм.
кНмм.
Строим эпюру эквивалентного момента.
МПа
[б и ]ш, Мпа- допускаемое напряжение изгиба по симметричному циклу нагружения,
бв - временное сопротивление материала(табл. 1).
Полученный диаметр вала нужно округлить в большую сторону до ближайшего значения из ряда нормальных линейных размеров.
Выбирается d=17 мм.
Для выходного вала .
Дано:
Т=26 кНмм, d=105,35 мм, Ft=2T/d=2*26/105,35=0,494 кH.
Fr=Ft*tg20/сщы=0,514*036394/0,93969=0,191 кH.
кH.
Материалы вала: ст.45 улучш.: