Курсовая работа: Распознавание графических символов

5.         Положение текста на изображении горизонтальное.

Приложение должно выполнять следующие задачи:

1.         Загрузка изображения в приложение.

2.         Сегментация текста на слова.

3.         Распознавание среди слов слово "Указ".

Выходные данные:

1.         Таблица найденных слов "Указ".


2. ОПИСАНИЕ ИСПОЛЬЗОВАННЫХ АЛГОРИТМОВ

2.1 Алгоритм сегментации текста

Процесс сегментации текста состоит из двух этапов: выделение строк текста и выделение слов в строках.

Поиск строк осуществляется путем просмотра пикселей изображения сверху вниз. При проходе запоминаются вертикальные координаты всех полностью белых полос на изображении (рисунок 2.1).

Рисунок 2.1 – Разбиение текста на строки

После нахождения всех белых горизонтальных полос анализируются их индексы. Для исключения соседних линий, строкой текста считается растр находящийся между двумя последовательными в списке, но не соседними белыми полосками.

Процесс поиска слов в строке заключается в анализировании вертикальных полос на изображении строки. При нахождении первой не полностью бело линии координата запоминается и считается начальной координатой слова, затем анализируются расстояния между буквами. При превышении некоторого порога слово "вырезается" из строки. Процесс продолжается до конца строки.

Алгоритм сегментации текста представлен в графической части

2.2 Алгоритм распознавания слова. Персептрон

Распознавание слова "Указ" в разработанном приложении, реализовано на базе персептрона. Алгоритм обучения персептрона – без учета правильности ответа. Персептрон построен по схеме "Несколько сумматоров". Общая схема персептрона представлена на рисунке 2.2

Рисунок 2.2 – Схема персептрона с несколькими сумматорами

Каждый А-элемент имеет несколько входов и один выход.

А-элементы производят алгебраическое суммирование сигналов, поступивших на их входы, и полученную сумму сравнивают с одинаковой для всех А-элементов величиной ϑ. Если сумма больше ϑ, А-элемент возбуждается и выдает на выходе сигнал, равный единице. Если сумма меньше ϑ, А-элемент остается невозбужденным и выходной его сигнал равен нулю. Таким образом, выходной сигнал j-го Α-элемента:

yj =

где величина rij принимает значение +1, если i -й рецептор подключен ко входу j-го Α-элемента со знаком плюс; и значение -1, если рецептор подключен со знаком минус, и значение 0, если i-ый рецептор к j-му Α-элементу не подключается (j = 1, 2, …, m, где m – число Α-элементов).

Выходные сигналы Α-элементов умножаются на переменные коэффициенты λj.

После умножения на λ выходные сигналы поступают на сумматоры Σ, количество которых также равно числу различаемых образов.

σ =

Предъявленный объект относится к тому образу, сумматор которого имеет наибольший сигнал.

В данной работе есть два распознаваемых класса условно из можно обозначить "Указ" и "Не указ". При обучении класса "Указ" на вход персептрона поступают изображения слова "Указ" написанное разными шрифтами. При обучении класса "Не указ", для повышения надежности работы персептрона, поступают те же изображения с текстом "Указ", но с инвертированными цветом.    

В каждом такте персептрон отвечает на предъявленный ему объект возбуждением некоторых А-элементов. Обучение состоит в том, что коэффициенты λj возбужденных в данном такте А-элементов увеличиваются на некоторую величину (например на единицу), если в этом такте был предъявлен объект образа А, и уменьшается на эту же величину, если был предъявлен объект образа В.


3.      РАЗРАБОТКА И РЕАЛИЗАЦИЯ ПО

3.1 Архитектура программы

Программа написана как проект Windows Forms Application, т.е. windows-приложение, графический интерфейс которого представлен формами и диалоговыми окнами. Структура разработанного проекта представлена на рисунке 3.1.

К-во Просмотров: 1084
Бесплатно скачать Курсовая работа: Распознавание графических символов