Курсовая работа: Распределение метеовеличин и коэффициента преломления воздуха в нижнем слое атмосферы летом
Как мы знаем, основной вклад в изменения коэффициента преломления вносят изменения значений влажности. В тропосфере северного полушария независимо от сезона года влажность воздуха уменьшается с высотой, достигая минимумы вблизи тропопаузы. В стандартной атмосфере влажность воздуха убывает с высотой по эмпирическому соотношению (14).
Среднегодовые и сезонные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей. «Мгновенные» профили обладают значительно более сложной конфигурацией с различного рода изгибами и изломами и характеризуются большой изменчивостью во времени [6].
Вертикальный профиль средней относительной влажности июля не имеет больших изломов, а ведет себя довольно сглажено (см. рисунок 2). Падение f с высотой совсем небольшое. В слоях от 0 до 40 м и от 112 до 180 м более выраженное уменьшение влажности. А вот в слое от 40 до 112 м ее падение практически не наблюдается. Вообще разница f между нулевым уровнем и высотой 180 м составляет всего 15%.
Рисунок 2 – Вертикальный профиль средней относительной влажности июля
Вертикальный профиль средней упругости водяного пара июля практически повторяет ход вертикального профиля f (см. рисунок 3). В слоях от 0 до 24 м и от 112 до 180 м наблюдается более выраженное падение, а в слое от 24 до 112 м изменений в упругости водяного пара практически не наблюдается (отличие состоит в том, что относительная влажность практически не меняется с 40 м, а упругость водяного пара с 24 м). Разница е между нулевым уровнем и высотой 180 м составляет всего 4,4 гПа. Из графиков видно, что, действительно, среднемесячные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей.
Рисунок 3 – Вертикальный профиль средней упругости водяного пара июля
4.3 Вертикальный профиль среднего показателя преломления воздуха в июле
Вследствие большой изменчивости показатель преломления удобно характеризовать средними (усредненными за определенный период времени) величинами. Конкретные профили коэффициента преломления, полученные во время одного зондирования, существенно отличаются от усредненных высотных распределений N и от стандартной радиоатмосферы. Эти отличия обусловлены нерегулярным характером высотного распределения температуры и влажности, которое изменяется во времени и зависит от погоды и климата [6].
Представление о закономерностях среднего изменения с высотой коэффициента преломления атмосферы можно получить из анализа выражения (9). Из этого выражения следует, что увеличение Р и е вызывает рост N, в то время как увеличение Т приводит к уменьшению N. Если взять частные производные соотношения (9) последовательно по Р, е и Т, то получится выражение для оценки величины вклада, вносимого каждым метеорологическим параметром в изменение N. Для средних летних условий это выражение примет вид:
,(25)
где ∆T, ∆P, ∆e – приращения средних значений температуры, давления, упругости водяного пара соответственно.
Из выражения (25) видно, что изменения величины N в одной точке в основном зависят от изменения температуры и влажности, причем влияние влажности заметно превосходит влияние температуры, т.к. величины ∆e и ∆T при выбранной системе единиц примерно одного порядка; влияние давления в этом случае настолько мало, что им можно даже пренебречь [7].
По средним значениям N на высотах 0, 24, 40, 112, 180 м был построен график вертикального профиля показателя преломления воздуха в июле (см. рисунок 4). Из графика видно, что показатель преломления убывает с высотой. Это происходит потому, что (если опять же анализировать выражение (9) ) Р и е с высотой уменьшаются, а Т увеличивается до определенного уровня, а потом уменьшается. В слое от 0 до 24 м идет достаточно выраженное падение N (градиент здесь равен – 0,183 N – ед/м). В слое от 24 до 40 м немного уменьшается интенсивность падения N, но не сильно (градиент составляет – 0,100 N–ед/м). А вот от 40 до 112 м наблюдается самое маленькое (незначительное) уменьшение N с высотой (градиент слоя составляет всего – 0,053 N – ед/м). Начиная со 112 и до 180 м наблюдается самое сильное падение N с высотой (градиент здесь самый большой и равен – 0,204 N – ед/м). Разница между нулевым уровнем и высотой 180 м составляет 23,7 N – ед/м (такая небольшая разница скорее всего обусловлена сглаженным среднемесячным ходом влажности – изменения ее тоже очень маленькие по вертикали).
Данный, среднемесячный профиль N близок к стандартной линейной зависимости. И поэтому можно аппроксимировать этот профиль линейной зависимостью (на графике аппроксимация показана черной линией).
Уравнение этой линии выглядит следующим образом:
,(26)
где у – значение N,
х – значение высоты.
Величина достоверности аппроксимации составляет: R2 = 0,9356.
Рисунок 4 – Вертикальный профиль среднего показателя преломления воздуха в июле
Видно, что эта характеристика составляет приблизительно 94%. Это говорит о том, что аппроксимация вполне достоверна.
4.4 Повторяемость различных видов рефракции в июле
В ряде приложений широко применяются данные не о самом коэффициенте преломления, а о величине его вертикального градиента. Для стандартной атмосферы с нормальной (стандартной) рефракцией вертикальный градиент равен: N – ед/м. Однако в приземном слое градиенты, близкие к стандартному, наблюдаются сравнительно редко вследствие большой изменчивости профиля N на этих высотах. К стандартной величине градиента близки лишь средние значения градиента в достаточно толстом слое воздуха – в слое 0 – 1000 м и более, причем время усреднения тоже должно быть достаточно большим – усреднение за месяц, за сезон и т.п.
Как и приземные значения показателя преломления, градиенты подвержены сезонным изменениям, причем сезонный ход среднемесячных значений градиента связан с сезонным ходом самого коэффициента преломления. С увеличением высоты слоя воздуха сезонные колебания градиентов уменьшаются, и на высотах более 600 м ими можно пренебречь [6].
Детальное рассмотрение многочисленных N – профилей, полученных в разную погоду в разное время суток, показало в основном большинстве случаев наличие критических и сверхкритических градиентов величины N в самом нижнем 25 – метровом слое атмосферы. Для слоя 25 – 121 м – характерна повышенная рефракция. Слой выше 120 м выглядит самым стабильным, он приближается к стандартной атмосфере.
Как следует из выражения (9), появление больших градиентов N должно иметь место в тех слоях атмосферы, где наиболее резко выражена инверсия температуры и происходит падение с высотой абсолютной влажности воздуха. Летом именно в слое до 100 м наиболее резко выражены ночные инверсии температуры, а днем наблюдается значительное падение влажности с высотой. Оба эти фактора и обусловливают сверхкритическую и повышенную рефракции в нижнем 120 метровом слое атмосферы [7].