Курсовая работа: Разработка электромеханического привода подачи станка модели 16К20

Так как требуемую продолжительность работы механизма до наступления усталости любого его элемента принимают равной около 10000 часов, то можно оставить параметры текущего механизма.

Расчет винта на устойчивость по критической осевой силе. Если достаточно длинный винт работает на сжатие, его проверяют на устойчивость при наибольшем тяговом усилии Q, принимаемом за критическую силу. С учетом того что момент инерции сечения винта определяют не для минимального его диаметра, а условного d0, получают приближенную зависимость

,

где Е =20×105 - модуль упругости материала винта;

3216

- момент инерции сечения винта;

- коэффициент, зависящий от характера заделки концов винта (если оба конца винта защемлены, принимают равным 0,5; при одном защемленном конце и размещении второго на шарнирной опоре, имеющей возможность смещаться в осевом направлении, = 0,707; при обеих шарнирных опорах = 1; при одном защемленном конце и втором свободном = 2);

l=350 - наибольшее расстояние между гайкой и опорой винта.

H

Расчет винта на устойчивость по критической частоте вращения. В моменты быстрых перемещений рабочего органа станка, когда винт вращается с высокой частотой, центробежные силы могут вызвать потерю его устойчивости, что проявляется в наступлении вибраций, Критическая частота вращения винта (об/мин) , где d - внутренний диаметр резьбы винта, мм; v - коэффициент, зависящий от способа заделки винта (если один конец винта заделан жестко, второй свободный, v принимают равным 0,7; в случае обоих опорных концов =2,2; если один конец заделан жестко, другой опорный, v=3,4; когда оба конца заделаны жестко =4,9); k=0,5. . 0,8 – коэффициент запаса; l – расстояние между опорами винта, мм

об/мин

Расчет на жесткость.

Необходимый диаметр ходового винта d0 можно определить из условия обеспечения жесткости привода, которая связана с жесткостью шарико-винтового механизма jM, винта jв и его опор j0:

Осевая жесткость привода оказывает влияние на возможность возникновения и его резонансных колебаний.

Чтобы не допустить резонансного режима, собственную частоту колебаний механической части привода j принимают в 3-3,5 раза больше, чем частота f1 импульсов, вырабатываемых системой измерения перемещений.

Для крупных станков f1= 10. . . 15 Гц, для средних и малых f1= 15. . . 25 Гц. Исходя из допустимой частоты колебаний механически части привода f, определяют его требуемую жесткость (Н/мкм):

m - масса узлов механической части привода (ходового винта, исполнительного узла и установленных на нем приспособления, заготовки), кг.

Жесткость шарико-винтового механизма с предварительным натягом и возвратом шариков через вкладыши при

где ks= 0,3. . . 0,5 - коэффициент, учитывающий погрешности изготовления гайки, а также деформации в винтовом механизме и во всех его стыках.

Наименьшая жесткость ходового винта зависит от способа установки его на опорах. При защемлении обоих концов (Н/м):

Приближенное значение жесткости опор винта (Н/мкм):

e=5; 10; 30 соответственно для радиально-упорных, шариковых и ролипорных подшипников; d0-в мм.

3. Силовой расчет привода станка

3.1 Определение расчетного КПД станка

К-во Просмотров: 559
Бесплатно скачать Курсовая работа: Разработка электромеханического привода подачи станка модели 16К20