Курсовая работа: Разработка функциональных узлов, выполняющих типовые для цифровых устройств микрооперации

Синтез ФУ.


Таблица переходов:

Х1 Х2 Х3 Х4 1 2
0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0
3 0 0 1 1 1
4 0 1 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0
15 1 1 1 1

Минимизация (по карте Карно):

1.

Х1х2

Х3х4

00 01 11 10
00
01 1 1
11 1
10 1 1

Z1 = x4 V x2 x3 V x1 x3

2.

Х1х2

Х3х4

00 01 11 10
00 1 1
01 1 1
11 1 1
10

Z2 =x1 V x3 x4

Переход в базис И-НЕ:

Z1 = x4 V x2 x3 V x1 x3 = ; Z2 = x1 V

x3 x4 =

Выбор типа описания используемых серий микросхем

Перспективными, часто используемыми системами, имеющими широкий спектр СИС, являются системы типов ТТЛ, ТТЛШ, ЭСЛ, КМОП. Так как по критерии оптимизации мне достался максимум быстродействия, то я выбрал систему типа ЭСЛ (эмиттерно-связанная логика). Цифровые микросхемы ЭСЛ имеют наибольшее быстродействие, но потребляют значительную мощность. В настоящее время широко используются серии 100, 500, 1500, отличающимися друг от друга типом корпуса и количеством СИС в серии. Особенность ЭСЛ в том, что схема логического элемента строится на основе интегрального дифференциального усилителя (ДУ), транзисторы которого могут переключать ток, но при этом никогда не попадают в режим насыщения.

Рис. 1.1. Исходные схемы для элемента ЭСЛ:

На рис. 1.1, а показана основа логического элемента DD1 - переключатель тока. Если входным сигналом открыть транзистор VT, через него потечет весь ток, вытекающий из общей точки эмиттеров - Э. На коллекторе транзистора VT1 окажется напряжение низкого уровня. В этот момент транзистор VT2 тока не имеет, он вынужденно находится в состоянии отсечки. На его коллекторе отсутствует напряжение высокого уровня. Наличие генератора стабильного тока (ГСТ) принципиально - с его помощью строго фиксируются выходные логические уровни.

На рис. 1.1,б показан простейший одновходовой элемент ЭСЛ. Новым в развитии элемента DD1 (рис. 1.1, а) здесь является источник опорного напряжения Uon. Это напряжение фиксирует порог срабатывания переключателя тока. Тем самым дифференциальный усилитель превращается в логический элемент. У него теперь два состояния выходов, которые переключаются лишь при условии: Uвх>Uon. Однако при проектировании ЭСЛ ставилась задача: получить сверхскоростную логику. На схеме (рис. 1.1,б) этого достичь нельзя, так как выходное сопротивление выходов Q и Q с инверсией велико, оно приближается к номиналу Rk. Для снижения выходного сопротивления к коллекторным выходам подключаются эмиттерные повторители-транзисторы VT3 и VT4, работающие в линейном режиме (рис. 1.1, в). Теперь выходное сопротивление эмиттерного выхода принципиально уменьшается.

где (В+1)-коэффициент усиления транзистора - эмиттерного повторителя по току. Эмиттерные выходы чаще делаются «открытыми», чтобы можно было их соединять в элементы «монтажное ИЛИ». Кроме того, внутренние нагрузочные резисторы рассеивают большую мощность, чем сильно ухудшают тепловой баланс корпуса ЭСЛ. Во многих случаях не обязательно отбирать от повторителей VT3-VT4 максимальный ток. Сопротивление внешнего нагрузочного резистора Rн можно выбрать самостоятельно в широких пределах, например от 300 Ом до 30 кОм.

На рис. 1.1, г показан следующий шаг развития схемотехники ЭСЛ: для получения нескольких логических входов следует использовать один пороговый транзистор (в схеме он составной: VT3-VT2) и несколько параллельно соединенных входных транзисторов. В данном случае логическую функцию входов A и B реализуют транзисторы VT4 и VT1. В современных ЭСЛ логические входы снабжаются внутренними резисторами. Такой резистор, во-первых, позволяет оставлять неиспользуемые логические входы свободными, неприсоединенными; во-вторых, эти резисторы служат предыдущим элементам ЭСЛ нагрузками для их выходных эмиттерных повторителей. В правой части схемы (рис. 1.1, г) показан простейший источник порогового напряжения Uon (резисторы R1, R2 и диоды VD1, VD2), который вырабатывает опорное напряжение 4,6 B, он снабжен эмиттерным повторителем VT3 для увеличения нагрузочной способности.

Отметим дальнейшую принципиальную особенность микросхем ЭСЛ: они питаются отрицательным напряжением – -Uи.п. (т.е. - напряжение подается от эмиттеров), причем коллекторные цепи заземляются. Этим способом повышается помехоустойчивость ЭСЛ.

Рис. 1.2. Способы подачи питания на ЭСЛ: а - с заземленными эмиттерами; б - с нулевой коллекторной шиной; в - с раздельными коллекторными выводами

На рис. 1.2, а показана передача сигнала Uc от эмиттерного повторителя VT3 из элемента-источника DD1 (ЛЭЙ) на базовый вход транзистора VT1 в логическом элементе-приемнике DD2 (ЛЭП). Видно, что большой ток потребления Iпот, протекающий по относительно тонкому проводнику коллекторного питания Uи.n.к, имеющему определенное погонное сопротивление R, даст напряжение помехи Un, которое в сумме с сигналом U поступит на вход А2 элемента DD2. Из этого обстоятельства следуют два вывода: во-первых, коллекторная шина питания делается большого сечения и заземляется (дается нуль потенциала, см. рис. 1.2,б); во-вторых, разъединяются коллекторные цепи переключателя тока и эмиттерных повторителей (рис. 1.2, в). Корпус ЭСЛ имеет, таким образом, два вывода коллекторного питания Uи.п. к1 и Uи.п. к2 и один вывод эмиттерного -Uи.п.э = -5,2 В.

Рис. 1.3. Логический элемент ЭСЛ серии К500: а - принципиальная схема; б - включение; в - схема для снятия переключательных характеристик; г - переключательные характеристики для выходов Q и Q с инверсией; д - временная диаграмма

К-во Просмотров: 221
Бесплатно скачать Курсовая работа: Разработка функциональных узлов, выполняющих типовые для цифровых устройств микрооперации