Курсовая работа: Разработка интеллектуального агента глоссария с набором терминов по тематическим вопросам

Целью курсового проекта является разработка интеллектуального агента глоссария с набором терминов по тематическим вопросам.

1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ И ПОСТАНОВКА ЗАДАЧИ

1.1 Анализ и виды интеллектуальных агентов в системе дистанционного обучения и их характеристики

Наиболее важным аспектом для дистанционного обучения, развитие в пределах Internet - стандартизация технологий различными международными организациями. Несколько параллельных усилий IEEE LTSC, AICC, ADL, IMS, ARIADNE, и некоторых других организаций привели к сосуществованию различных стандартов и спецификаций. Однако почти все из них - относительные взаимосвязи содержания, моделей данных, и протоколов. Центральная часть тех стандартов – относительно достижения способности к взаимодействию, достижимости и возможности многократного использования доступного через сеть содержания изучения посредством различного типа метаданных.

Любой объект может использоваться для изучения, образования или обучения до и после того, как используемый термин объекта изучен. Составление обучающего множества от набора дистанционного обучения предполагает упорядочивание их для представления предназначенного поведения учащегося.

Развитие спецификаций, основанное на идее, что все дистанционное обучение – это пассивный объект и вся деятельность изучения, должна происходить от пользователей.

Агенты рассматриваются перспективным подходом для формирования сложных программных систем, потому что парадигма агента учитывает приложения моделирования естественным способом. Имеется ряд различных подходов, чтобы определить моделирование агента. Агент может рассматриваться, как восприятие и действие или модель "Belief – Desire – Intention" (BDI), как теория человеческого практического рассуждения. Эта модель осуществляется на различных компьютерных технологиях, которые направлены на реализацию логики агента. Другой очень важный предмет в ориентировано - агентном подходе устанавливает связи между агентами в среде мультиагентных систем.

Основа для интеллектуальных агентов продвигает стандарты, которые особенно определяют связь агента, как основная категория в основе FIPA модели мультиагентных систем. Мы выбираем для нашего исследования и практики платформу мультиагентных систем Jade и Jadex, и они следуют за BDI архитектурой [6, 18].

1.1.1. Среда разработки Jadex. Среда разработки Jadex – это средство для создания интеллектуальных агентов. Используется различными видами агентов, предоставляя основные сервисы, такие как инфраструктура коммуникаций или средства для управления.

Сейчас доступно два полноценных средства разработки, которые адаптируют эту технологию. Первая адаптация доступна для широко известной открытой платформы Jade. Вторая адаптация – автономная адаптация Jadex, которая маленькая, но с быстрой средой и минимальной загрузкой памяти [7].

1.1.2 Ориентированный подход агентов. Модель, сосредоточенная на выполнении ориентируемого агентом подхода к разработке машинных обучающих систем. Прежде всего, все дистанционное обучение соединяется с соответствующими агентами. Законченный набор агентов, т.е. логический канал с сообщениями агентов, формирует сеть для студента, чтобы скользить через это в изучении предмета.

В каждый момент студент имеет доступ к только одному агенту дистанционного обучения и следует за командами, сгенерированными агентом из-за его собственных фактов, целей и планов. Когда некоторые условия были достигнуты, агент посылает сообщения другому агенту с различными целями, например, сделать запрос для справки или переадресовывать студента к следующей части узнающего содержания. Скольжение от одного агента к другим формирует студенту его предпочтительную траекторию изучения. Последовательность переходов управляется агентом менеджмента. Основная цель агента состоит в том, чтобы достигнуть лучшего покрытия логического канала между агентами и намекать студенту относительно наиболее оптимального пути. Так, вообще цели агентов могут быть взаимно противоречащие [8].

1.1.3. Взаимодействие агентов. Тип взаимодействия между пользователем и агентом дистанционного обучения зависит от его типа. Скелет взаимодействия включает: запрос содержания дистанционного обучения; представление содержание при условиях заданного; обратная связь студента; оценка продвижения студентов; определение следующего действия. Некоторые из этих шагов, могут быть опущены или изменены, применяясь к определенному агенту дистанционного обучения.

Агенты дистанционного обучения связываются друг с другом, чтобы послать информацию относительно продвижения текущего студента и чтобы получить дополнительную информацию и справку. Наиболее популярные сообщения находятся на завершении дистанционного обучения или оживления некоторой деятельности агента дистанционного обучения. Каждый раз, когда столкновения случаются в сеансе связи между агентами дистанционного обучения, агент управления логическим каналом должен решить проблему и восстанавливать гладкий поток образовательного процесса. Так, его цель не только, чтобы выполнить образовательные требования, но также и поддерживать порядок и последовательность.

Дистанционное обучение может иметь в своей структуре лекции, лабораторные работы, практические занятия, глоссарий терминов, тестирование, определение оценок. Все это может вызывать различные виды действия пользователя.

1.1.4. Агенты теоретических компонентов. Агент дистанционного обучения для теоретических компонентов может рассматриваться, как простой основанный на модели отраженный агент. Это означает, что он имеет очень простые цели и быструю модель функционирования, основанную на правилах продукции. Пользователь может исполнять некоторые действия, которые генерируют условия для активации правил агента. Наиболее сложный случай такого функционирования агента – то, когда цикл поставки, показа, объяснения, повторения оценки достигает удовлетворительного уровня знаний пользователей. Агент может оценивать знание студента через тестирование.

Имеются несколько вызванных действий, которые могут описывать работу пользователей и агентов на форумах и симпозиумах: Вопрос, Ответ, Мнение, Метка, Успех, Ошибка, и Переадресация. Последовательность этих действий не может быть определена. Поэтому, не имеется никакого предопределенного пути к выполнению цели такого дистанционного обучения. Агент должен выполнять план и непрерывно планировать его заново. Такой тип агентов, мог быть осуществлен как сервисно-основанный агент планирования [4, 8].

1.1.5. Агенты назначения. Назначения - тип обучающих действий, которые предусматривают, что студент должен делать некоторую домашнюю работу и представлять ее результаты на оценку преподавателю. Вообще, преподаватель может назначать задачу, которая основана на некотором теоретическом дистанционном обучении или вспомогательная другому дистанционному обучению. Преподаватель может также предлагать некоторый сценарий для выполнения назначения. Сценарий имеет даты, типовую последовательность, и список связей на чтениях. Студент, использующий всю представленную информацию, завершает назначение и посылает это за экспертизу. Агент назначения дистанционного обучения исполняет действие в некоторой последовательности предписания и может помогать студенту, находить необходимую информацию, преподаватель, чтобы проверить зарегистрированные назначения и знает цифровые источники на совпадении, и обоих, чтобы быть в списке. Таким образом, базирующийся на анализе действий агента мы можем заключить, что это могло быть осуществлено как цель - основанный агент планирования с библиотекой предварительно запрограммированных планов.

В течение лабораторных занятий студенты получают некоторые практические навыки и усиливают теоретические знания. Агент лабораторий в системе дистанционного обучения может помогать студенту, в то время как он следует командам лабораторий, и оценивает действие каждого отдельного студента. Если справка будет необходима студенту, агент может предлагать одну из сохраненных стандартных команд, как преодолеть проблему или посылать уведомление с запросом преподавателю. Этот тип агентов осуществляется таким же образом, как и агент назначения [8].

1.2 Постановка задачи

Проанализировав предметную область и различные виды деятельности агентов в системе дистанционного обучения, мы можем предложить уйти от структурированности данных материалов. Чтобы уже работали агенты над учебными материалами для студентов. В нашем случае агент глоссария является интеллектуальным воздействием для предоставления дополнительной информации.

Глоссарий – это набор терминов, которые могут встречаться в обучающем материале студента системы дистанционного обучения. Глоссарий терминов в системе дистанционного обучения может иметь в своей структуре обучающего материала, такие как лекции, лабораторные работы, практические занятия, тестирование.

Глоссарий может быть двух видов: структурированный и ссылочный.

В структурированном глоссарии размещение терминов происходит в алфавитном порядке. Ссылочный глоссарий - предоставление информации происходит через переход по гиперссылкам. Гиперссылки могут быть вложенными.

Целями агента глоссария является предоставить дополнительную информацию студенту по изученному материалу и по возможности заменить преподавателя для разъяснения определенных терминов, а также получение подтверждения их понимания. В зависимости от наличия гиперссылки в тексте обучающего материала, можно производить поиск необходимых терминов по переходу через гиперссылки и вложенные гиперссылки. Также может быть наличие гиперссылки на материале в Internet.

Необходимо разработать модель интеллектуального агента глоссария в системе дистанционного обучения для предоставления дополнительной информации в среде разработки Jadex, которая предназначена для создания интеллектуальных агентов.

интеллектуальный агент глоссарий jadex xml

2. МОДЕЛЬ ИНТЕЛЛЕКТУАЛЬНОГО АГЕНТА ГЛОССАРИЯ

2.1 Построение модели интеллектуального агента

В соответствии с поставленной задачей разработаем схему работы интеллектуального агента глоссария в общей работе мультиагентной системы для дистанционного обучения. Взаимосвязь интеллектуального агента с системой, его деятельность отображена на рис. 2.1.

Рисунок 2.1 – Схематическая модель работы интеллектуального агента глоссария

Данная схематическая модель показывает работу интеллектуального агента глоссария. Также на ней описаны цели, факты и планы, которые агент будет достигать.

Итак, с помощью модели определим работу агента. Запуск агента происходит (1 блок модели), когда подается запрос через гиперссылку на поиск дополнительной информации о термине в том материале (лекции, лабораторные, практические и т.д.), который проходит студент, это отображено на 2 блоке модели. Эту операцию агенту глоссарию поручает агент координатор, который управляет взаимодействием между всеми личными агентами. Когда запрос подан, агент начнет производить поиск термина в xml файле, который содержит описание всех терминов. Если заданный термин не найден, то агент посылает сообщение, что данного материала нет (3 блок). Только когда не найдена ссылка, сообщение отправляется агенту координатору. Но когда материала вообще нет в наличии, то сообщение отправляется агенту чата (4 блок модели), чтобы было отправлено письмо преподавателю о том, что необходимо выложить данный материал.

Если необходимый термин найден, то по плану происходит вывод на экран, так как это видно на модели в 5 блоке. И когда функция агента считается выполненной, он переходит в спящий режим до следующего вызова (6 блок) [11].

2.2 Построение интеллектуального агента на платформе Jadex с помощью XML формата

К-во Просмотров: 297
Бесплатно скачать Курсовая работа: Разработка интеллектуального агента глоссария с набором терминов по тематическим вопросам