Курсовая работа: Разработка локальной сети малой организации
Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.
Базовые топологии
Все сети строятся на основе трех базовых топологий:
- шина;
- звезда;
- кольцо.
Шина
Рис.12. Топология «общая шина» |
Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.
Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.
Звезда
При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором. Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.
Рис.13.Топология «звезда»
В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.
Кольцо
При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Передача маркера
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.
Рис.14.Топология «кольцо»
Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.
Таблица 4 – Характеристики топологий вычислительных сетей
Характеристики | Топология | ||
Звезда | Кольцо | Шина | |
Стоимость расширения | Незначительная | Средняя | Средняя |
Присоединение абонентов | Пассивное | Активное | Пассивное |
Защита от отказов | Незначительная | Незначительная | Высокая |
Размеры системы | Любые | Любые | Ограниченны |
Защищенность от прослушивания | Хорошая | Хорошая | Незначительная |
Стоимость подключения | Незначительная | Незначительная | Высокая |
Поведение системы при высоких нагрузках | Хорошее | Удовлетворительное | Плохое |
Возможность работы в реальном режиме времени | Очень хорошая | Хорошая | Плохая |
Разводка кабеля | Хорошая | Удовлетворительная | Хорошая |
Обслуживание | Очень хорошее | Среднее | Среднее |
Исходя из приведенных характеристик различных топологий и требований к проектируемой сети (высокая отказоустойчивость, хорошая разводка кабеля, легкость обслуживания, возможность независимого входа в сеть) выбираем топологию типа «общая шина».
4.2 Способы соединения
Разводка по разъему
Существует 2 основных способа разводки жил четырехпарного UTP/FTP/STP-кабеля по стандартному штекеру 8P8C, более известные в обиходе как RJ-45. Эти способы описаны в стандарте EIA/TIA-568 и выглядят так, как это показано на рисунке 15. Нумерация ножек в штекере при этом - от 1 до 8, причем первой считается та ножка, которая будет слева, если держать штекер перед собой направленным вверх ножками, защелкой от себя. Способы эти в обиходе называются, соответственно, "разводка по варианту А" и "разводка по варианту B".
Рис. 15. Стандарты EIA/TIA-568
Легко заметить, что, по сути, эти способы отличаются только тем, что зеленая и оранжевая пары в штекере меняются местами. Те жилы кабеля, что в варианте А, шли на ножки 1 и 2 - в варианте B оказываются на ножках 3 и 6, и наоборот. Разводка же кабеля по ножкам 4, 5, 7 и 8 (синяя и коричневая пары) одинакова в обоих вариантах.
Используемые жилы
При работе в сетях Ethernet в стандартах 10Base-T (обычные 10 мегабит) и 100Base-TX (обычные 100 мегабит) в проводе используются только две пары - зеленая и оранжевая, те самые, что при описанной выше стандартной разводке оканчиваются на ножках 1, 2, 3 и 6. Синяя и коричневая пары - не используются и могут вообще отсутствовать в кабеле.
При работе в сетях 1000Base-T (гигабитный Ethernet) в кабеле задействованы все четыре пары, так что все четыре и должны присутствовать в обязательном порядке.
Прямые и crossover-кабели
Виды разводки Ethernet-портов: MDI и MDI-X
Чтобы еще больше запутать ситуацию, введено два различных способа разводки портов в активном сетевом оборудовании. С одной стороны, стандартом предусмотрено, чтобы соединение оборудования сетевой инфраструктуры (коммутаторы, концентраторы) и клиентских сетевых карточек осуществлялось прямыми проводниками, без усложнения разводки кабельной системы. С другой стороны, если на одном конце пары находится передатчик - то на другом ее конце должен быть приемник и наоборот, так что где-то передающие и приемные ножки на разъеме необходимо поменять местами. Сделано это на уровне способа разводки Ethernet-гнезд на устройствах.
Гнезда на сетевых платах компьютеров, на разнообразных DSL-модемах, аппаратных маршрутизаторах и другом сетевом оборудовании, не образующем инфраструктуры ЛВС, обычно разводят так, чтобы передача велась по ножкам 1-2 гнезда, а приемник был на ножках 3 и 6. Такая разводка носит название MDI (от термина Media-Dependent Interface).
Гнезда на коммутаторах и концентраторах, с другой стороны, содержат "внутренний переворот" сигнальных линий. В них поменяны местами пары, ответственные за передачу и прием, так что коммутатор наоборот передает по ножкам 3 и 6 своего разъема, а принимает - на ножках 1-2. Такой вид внутренней разводки гнезда обозначается как MDI-X (MDI with internal crossover).
Соединение портов между собой
Для соединения между собой Ethernet-устройств с портами разных типов (с одной стороны MDI, а с другой MDI-X), например, для подключения компьютера к коммутатору или для соединения маршрутизатора с коммутатором - применяется прямой кабель. Для его изготовления достаточно выбрать любой из описанных в первом разделе стандартных вариантов разводки кабеля, и обжать оба его конца в соответствии с этим вариантом, строго одинаково.