Курсовая работа: Разработка микропроцессорной системы на базе микроконтроллера для пожарной сигнализации

В дежурном режиме пожарной сигнализации с компаратора приемника будут поступать импульсы на вход RB0 с интервалом в одну секунду. С такой же частотой будет происходить прерывание по входу RB0. После сохранения значений регистров определяется, почему произошло прерывание-. Если прерывание произошло не по переполнению таймера, то проверяется длительность входного импульса. Если длительность импульса короче, чем половина длительности импульса посылки с передатчика (т.е. 1,34 мс), то такой импульс воспринимается как помеха и не подсчитывается счетчиком. Если длительность импульса больше 1,34 мс, то обнуляется таймер, определитель и счетчик миллисекунд. Если флаг переполнения включен (было переполнение), то инкрементируется регистр счета. Далее процессор проверяет значение регистра счета. Если в регистр записано 20 и более импульсов, то регистр обнуляется и включается звуковой сигнал. Ситуация, когда на счетчик приходит 20 импульсов, принята аварийной. Это возможно при работе пожарной сигнализации в зоне повышенных помех или помех, которые наводятся специально.


Рис. 5 - Алгоритм работы программы, демодулятора для пожарной сигнализации

Каждые 0,125 секунды может происходить прерывание от переполнения таймера. За одну секунду между импульсами, поступающими на вход RB0, произойдет 8 прерываний по переполнению таймера. При каждом прерывании будет инкрементироваться счетчик миллисекунд. Но поскольку коэффициент деления счетчика миллисекунд равен 11, то переполнения счетчика за одну секунду не будет. А каждая новая секунда будет начинаться с обнуления таймера и счетчика миллисекунд. При значении счетчика, равном 5 (0,6 с), переписывается значение регистра счета в регистр индикации. Это необходимо для того, чтобы при выходе передатчика из аварийного режима обнулялось предыдущее значение регистра счета. Далее проверяется значение регистра индикации, чтобы оно не превышало число 12. Если значение регистра индикации равно или больше 12, то регистр обнуляется. Последующая проверка регистра счета на число 20 является дублирующей аналогичную проверку при инкрементировании регистра счета.

При значении счетчика миллисекунд, равном 7 (0,88 с), выключается звуковой сигнал, если он был включен, и сбрасывается флаг переполнения (рис. 8.). Это также необходимо для нормального выхода из аварийного режима, поскольку эти операции (при значении счетчика 5 и 7) выполняются в интервале времени, равном 1 секунде.

Если после последнего импульса, пришедшего на вход, прошло более 1 секунды, точнее, 1,125, а это соответствует значению счетчика миллисекунд, равному 9, включится звуковой сигнал и установится флаг переполнения. Включение флага переполнения разрешает подсчет входных импульсов. А при каждом входном импульсе сбрасывается счетчик миллисекунд, таймер и предделитель. Поэтому значение счетчика миллисекунд, равное 11, возможно только тогда, когда приемник выходит из зоны действия передатчика или если передатчик прекратил функционирование. В этой ситуации счетчик миллисекунд обнуляется, а звуковой сигнал уже включен.

Таким образом, при поступлении импульсов на вход RB0 каждую секунду, что свидетельствует о нормальной работе охраны, сигнал тревоги включаться не будет, а цифровой индикатор не будет светиться. При размыкании любого из датчиков произойдет переполнение счетчика миллисекунд, включится сигнал, а на индикаторе можно наблюдать номер сработавшего датчика.


Рис. 6 - Алгоритм работы программы демодулятора для пожарной сигнализации

Для наглядности алгоритма работы программы демодулятора рассмотрим диаграмму, показанную на рис. 7 (для наглядности на диаграмме масштаб не соблюдается). В дежурном режиме каждое включение несущей передатчика сопровождается выдачей импульса модуляции. Импульс модуляции с выхода компаратора приемника будет поступать на демодулятор через одну секунду. В аварийном режиме несущая передатчика будет включаться только на время «t» для формирования импульсов с числом, равным номеру датчика. Учитывая, что период импульсов равен 5,37 мс, максимальное значение «t» будет приблизительно равно 0,06 мс (И импульсов). А максимальное значение длительности паузы между импульсами будет равно 2 - 0,06 = 1,94 с. Счетчик миллисекунд демодулятора до включения аварийного режима имеет коэффициент деления, равный 9, поэтому переполнение счетчика будет происходить через 1,125 секунды, что гораздо меньше максимального значения паузы.

При первом переполнении счетчика миллисекунд включается флаг переполнения. После включения флага переполнения начинает заполняться регистр счета. Перезапись в регистр индикации производится спустя 0,6 с после прихода последнего импульса. Таким образом, индикация обновляется каждые две секунды.

Если число импульсов, поступивших с компаратора, больше 11, то результат не выводится на индикатор как заведомо ложный. Такой вариант возможен при высоком уровне помех. Но даже и в этом случае включение звукового сигнала будет свидетельствовать о несанкционированном вторжении на охраняемый объект. При поступлении более 20 импульсов при любом значении флага переполнения включится тревожный сигнал. Это сделано для того, чтобы невозможно было вывести систему из строя путем подачи непрерывного сигнала помехи.

Рис. 7 - Диаграммы работы демодулятора

При экспериментировании с подачей сигнала сильной помехи по общему проводу наблюдался самопроизвольный переход микроконтроллеров в режим повышенного энергопотребления. Это я могу объяснить самопроизвольной переустановкой регистра, который определяет установку входа как выход (TRISA, TRISB).

4. Ассемблирование

Для ассемблирования спользуется макpоассемблеp MPASM, он содеpжит все необходимые нам возможности. MPASM входит в пакет программ Microchip MPLAB фирмы Microchip Technology.

Программа на языке Ассемблеp приведена в Приложении А.

5. Описание функциональных узлов МПС и алгоритма их взаимодействия

Описание функциональных узлов было описано в пункте разработки алгоритма устройства, поэтому не будем более подробно останавливаться на разборе, т.к. алгоритм взаимодействия будет описан еще при разработке принципиальной схемы и выборе элементарной базы.

В Приложении Б приведена программа файла модулятора, а в Приложении В файла демодулятора.

6. Описание выбора элементной базы и работы принципиальной схемы

Принципиальная схема модулятора показана на рис.10 (Приложение Г). На выходе RA3 появляются импульсы модуляции положительной полярности. На выходе RA4 появляется единичный потенциал включения несущей. Все остальные входы микроконтроллера задействованы охранными датчиками. Охранное положение датчиков нормально замкнутое. Программно ко всем входам порта «В» подключены подтягивающие резисторы, поэтому при размыкании датчиков программа обнаружит единичный потенциал на разомкнутом датчике. Входы порта «А» программно не подтягиваются к плюсовому напряжению питания, поэтому установлены резисторы Rl-R3. При подключении вывода RA4 к схеме передатчика необходимо иметь в виду, что этот выход имеет открытый сток, поэтому, в зависимости от схемы передатчика, может потребоваться нагрузочный резистор.

Схема демодулятора показана на рис. 11 (Приложение Д). Вход RB0 подключается к выходу компаратора приемника. Выход компаратора должен быть с уровнями ТТЛ. Остальные выводы порта «В» задействованы под выход сегментов индикатора.

К выходу RA4 подключается зуммер НСМ120бх. Кнопка SA1 включает индикатор. Резистор R1 необходимо подобрать по приемлемой яркости для свечения 3-4 сегментов. Тогда один сегмент будет светиться ярче, а восемь сегментов будут светиться слабее.

Перед подключением пожарной сигнализации к приемнику и передатчику желательно проверить ее на совместную работу. Для этого необходимо выход несущей и модуляции с модулятора подать на входы логического элемента микросхемы К561ЛА7 и, инвертировав сигнал еще одним элементом, подать на вход демодулятора. При проверке индикации число 10 на индикаторе высвечивается нижней чертой (сегмент d), а число 11 - средней чертой (сегмент g).

Все временные характеристики приведены для случая использования кварцевого резонатора на частоту 32768 Гц.

Принципиальные схемы модулятора и демодулятора выполнены в САПР AccelEda (Рис. 8 и Рис.9).

К-во Просмотров: 603
Бесплатно скачать Курсовая работа: Разработка микропроцессорной системы на базе микроконтроллера для пожарной сигнализации