Курсовая работа: Разработка программного продукта Delphi для моделирования логнормального распределения
Справа в разделе "Теоретически пользователь может ввести значение sigma и mu , те значения которые он считает нужными; a и b это интервал в пределах которого меняется график.И значение N – (количество єксперементов) – в зависемости от того сколько раз мы будем проводить єксперемент . В зависимости от выбора данных параметров пользователь может получить различные формы графика плотности вероятности.
В разделе "Критерий согласия" выводятся значения оценки Хи-квадрат для двух указанных методов. Ниже вывод математического ожидания и дисперсии, посчитанных теоретически и экспериментально.
Справа внизу формы выводится системное время и время выполнения расчётов в миллисекундах.
При нажатии на кнопку «Вывести графики и вычислить» слева выводятся график плотности логнормального распределения (построенный теоретически), гистограммы распределения случайной величины по логнормальному закону, смоделированные при помощи метода Неймана и метода обратной функции.
При нажатии на кнопку «Стоп» программа прекращаются свою работу и начинает считывать значения которые обработались до определенного момента и записует значения в поля.
При нажатии на кнопку «2D/3D» пользователь может наблюдать изменение графика из 2D в 3D и наоборот.
При нажатии на кнопку «Выход» программа будет завершена.
В закладке «About» пользователь может узнать о создателях данного программного продукта и краткое описание программного продукта.
Заключение
В данной курсовой работе была достигнута поставленная цель: я изучил и создал программный продукт, который представляет моделирование на компьютере логнормального распределения. Научился применять на практике свои знания полученные в процессе изучения Delphi.
В данном программном продукте реализованы работа с графиками, с таблицами, таймерами, файлами, различными математическими функциями.
Этот программный продукт, на мой взгляд, представляет собой законченную рабочую и отлаженную программу.
Список используемой литературы
1. http://en.wikipedia.org
2. Шеффе Г. Дисперсионный анализ. - М.: Физматгиз, 1980. - 628 с.
3. «Delphi 2005: «Секреты программирования»», Михаил Фленов.