Курсовая работа: Разработка технического и программного обеспечения автоматизированной системы научных исследований
Можно показать, что оценки СПМ приближенно имеют распределение с n степенями свободы, где
. Более того, для достаточно больших n, например,
, распределение
аппроксимируется гауссовским (нормальным) распределением. В этом случае нормированное стандартное отклонение (стандартное отклонение, связанное с оцениваемой величиной, т.е. процентная ошибка, или, в статистической терминологии, "коэффициент разброса") определяется соотношением (2.8):
|
(2.8) |
Величину называют стандартной ошибкой.
Если , то
.
Последний результат означает, что вычисление оценки СПМ с использованием полной длины временного ряда имеет стандартную ошибку, равную 100%.
Если отрезок Tp поделить на m участков, то в этом случае
.
Подставляя полученный результат в (2.8), найдем
.
Таким образом, для повышения точности оценивания СПМ необходимо исходный временной ряд длины N разбить на m участков длины Nу , вычислить для каждого i-го участка по формуле (1), а затем найти осредненную оценку по формуле
.
Следует иметь в виду, что разрешение по частоте в рассмотренном случае определяется из соотношения . Число степеней свободы для найденной оценки СПМ можно найти следующим образом
.
Следовательно, для повышения степеней свободы и, соответственно, статистической устойчивости оценок СПМ необходимо увеличивать число участков для осреднения.
Повышение числа степеней свободы можно достичь другим способом – осреднением по частотам.
Сглаженная оценка
|
(2.9) |
полученная осреднением l соседних оценок спектральной характеристики, имеет распределение с числом степеней свободы, равным примерно 2 l . Это следует из теории о сложении величин, имеющих распределение
.
Следует отметить, что разрешение по частоте в данном случае определится из соотношения .
Поскольку операция осреднения линейная, оценку СПМ можно найти, комбинируя осреднение по участкам с осреднением по частотам. При этом сначала выполняется осреднение по участкам, а затем – по частотам. При осреднении по m участкам с последующим осреднением l соседних спектральных оценок в итоге получаются оценки, число степеней, свободы которых равно . Разрешение в этом случае равно
.
3 РАЗРАБОТКА ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ
В состав технического обеспечения включены информационно-измерительный канал и персональная ЭВМ.
3.1 Структура АСНИ
АСНИ предназначена для спектрального анализа данных, поступающих от первичных преобразователей физических величин, характеризующих некоторый технологический процесс. В состав АСНИ входят следующие подсистемы:
· подсистема измерений – информационно-измерительный канал (ИИК);
· подсистема передачи данных;
· подсистема обработки данных;
· подсистема визуализации и документирования результатов.
Обобщенная структура АСНИ представлена на рисунке 3.1