Курсовая работа: Разработка устройства логического управления

__ __ __ ___

g2g1g0F2+g2g1g0F2

Упростив выражения, применяя алгебру логики, получим:

Теоретически возможны дальнейшие преобразования приведенных выражений и их минимизация в ещё большей степени, но в данном случае минимизация производилась с учетом использования мультиплексоров при реализации автомата с целью снизить количество корпусов микросхем.

Таким образом, число элементарных логических элементов в схеме автомата будет сведено к минимуму.

2.5 Составление таблицы переходов

Составим таблицу переходов (таблица 1):

Таблица 1

№ п/п При переменных Переходы
1 F1F2 010->110->111
2 F1B1 010->110->101->100->101
3 F1F2 010->110->111->101->111
4 F1 B1 010->110->101->100->101
5 010->011->111->101->111
6 B1 F2 010->011->100->111
7 B1 010->011->100->101->100
8 B1 F2 010->011->100->111>101->100
9 F1F2 B1 010->110->111->101->100->111

2.6 Выбор элементов и микросхем

С учётом промышленного назначения проектируемого автомата целесообразно использовать ТТЛ-логику (для простоты коммутации - так как часть входных сигналов задается уровнем ТТЛ ( b1) при напряжении питания 12 В. Для реализации автомата потребуются микросхемы: 3 8-входовых мультиплексора (74151А), 3 D-триггера с дополнительными входами установки и сброса (7474), 4 элемента НЕ (7404). Также в состав автомата входят некоторые другие микросхемы, которые будут рассмотрены при разработке соответствующих функциональных блоков.

Схема дискретного автомата выглядит следующим образом:

Рис.2.2 Схема управляющего автомата

2.7 Составление модели в OrCAD на основе полученных упрощенных выражений

Рис.2.3 Схема управляющего автомата при моделировании

2.8 Результаты моделирования схемы автомата

Подставляя на соответствующие входы значения проверяем правильность составления модели:


1) F1F2

2) F1B1

3) F1F2

4) F1 B1

5)

6) B1 F2

К-во Просмотров: 456
Бесплатно скачать Курсовая работа: Разработка устройства логического управления