Курсовая работа: Разработка устройства, предназначенного для формирования импульсных сигналов с заданным периодом и скважностью - ШИМ-регулятор

ШИМ - генераторы МК этого типа имеют от двух до шести независимых каналов и управляются несколькими (3-24) программно доступными регистрами. ШИМ - генераторы позволяют реализовывать синхронизацию каналов, формирование "мертвого" времени, его компенсацию, выравнивание импульсов по фронту или по центру, встроенные защиты от неисправностей, некоторые другие функции. Частоту несущего сигнала можно регулировать от 8 МГц до 125 Гц. В последнее время вместо встроенных ШИМ - генераторов микроконтроллеры оснащаются более универсальными средствами, которые, в том числе, реализуют и алгоритмы ШИМ. В контроллерах MOTOROLA (68HC16Y1, MC68336) это так называемый таймерный сопроцессор TPU (Timer Processor Unit), в изделиях INTEL (8xC196NP/NU) это интегрированный процессор событий EPA (Event Processor Array). В обоих случаях имеется в виду многоканальный таймер с очень гибкой схемой управления, полуавтономной от ядра контроллера. Программирование и TPU, и EPA осуществляется либо полностью, либо с использованием стандартных подпрограмм, в числе которых имеется и ШИМ с аналогичными указанным выше параметрами. Все перечисленные МК ориентированы на реализацию двуполярной ШИМ, которая, как указывалось, не позволяет получить наилучший гармонический состав выходного напряжения.

Достоинства табличного способа заключаются в том, что он позволяет реализовать любые алгоритмы ШИМ с высокой несущей частотой с помощью микроконтроллеров, весьма бедных в функциональном отношении. Тем не менее, этот способ не нашел широкого применения из-за следующих причин.

Обычно табличная ШИМ подразумевает поочередное считывание с частотой Fт того из массивов ПЗУ, который в настоящий момент соответствует заданным выходным параметрам. В результате, для реализации такой табличной ШИМ необходимо не менее 64 кБ (Fмmax = 60 Гц; диапазон регулирования (0.5-120)% дискретность регулирования примерно 0.5%). Этим практически исчерпываются возможности дешевых 8-разрядных МК.

Еще одна трудность - плавное регулирование тактовой частоты ШИМ при изменении частоты модулирующего сигнала. Здесь, как правило, применяется управляемый напряжением генератор, либо целочисленный 16-разрядный предварительный делитель, сигнал с которого вводится в МК.

Предлагается новый способ табличной реализации ШИМ, свободный от указанных недостатков. Необходимо отметить, что число всех возможных сочетаний состояний вентилей АИН равно 27 (обычно не превышает 12). В связи с этим предлагается "индексная" (в отличие от описанной выше "линейной") табличная ШИМ, которая реализуется по следующим принципам.

Сначала составляется нумерованный массив с допустимыми сочетаниями состояний вентилей АИН. Назовем его массивом состояний. Затем обычным способом рассчитываются массивы для всех частот модулирующего сигнала. После этого в каждом массиве, соответствующем конкретной частоте Fм, сохраняются только строки (с сохранением исходной нумерации), в которых происходит переключение, все остальные строки удаляются. Из этих "сокращенных" массивов составляются индексные массивы, которые содержат номера шагов (периода тактовой частоты ШИМ на периоде модулирующего сигнала), на которых происходят переключения и соответствующий индекс массива состояний. Индексные массивы и массив состояний записываются в ПЗУ, после чего ШИМ осуществляется обычным способом.

Алгоритм работы предлагаемой ШИМ приведен на рисунке 2.

Рисунок. 2. Алгоритм работы индексной ШИМ

Индексно - табличная реализация ШИМ требует существенно меньшего объема памяти, чем традиционная. Например, для получения указанных выше параметров (Fмmax = 60 Гц; диапазон регулирования (0.5-120)% дискретность регулирования примерно 0.5%) индексная ШИМ требует менее 11кБ. Экономия объема памяти позволяет довести соотношение Fт/Fн до 40 (тактовая частота ШИМ Fт примерно 48кГц) и, тем самым, увеличить точность аппроксимации несущего и модулирующего сигнала не менее, чем в 4 раза.

Таким образом, предлагаемая индексно - табличная ШИМ позволяет получить высокие показатели АИН и всего привода в целом, используя дешевые 8-разрядные микроконтроллеры. Тем более, все резервы этого класса МК еще не использованы, т.к. выпускаемые сейчас высокоскоростные модификации МК семейства MCS-51 (например, 80C3x0 фирмы DALLAS SEMICONDUCTOR) работают в 8.25 раза быстрее младших моделей этого семейства (КР1830ВЕ31).

1.2 Применение широтно-импульсной модуляции (ШИМ)

Широтно-импульсная модуляция, рассматриваемая в следующих примерах, используется в разных задачах - от формирования звукового сигнала и управления яркостью светодиодов до управления скоростью вращения электромотора. Все эти задачи основываются на базовом принципе ШИМ-сигнала - чем больше скважность импульсов, тем больше среднее значение напряжения (рисунок 3). Зависимость среднего напряжения от величины скважности является линейной:

VСР = скважность х Vмакс

Рисунок. 3. Зависимость среднего значения напряжения от скважности ШИМ

Выбор частоты ШИМ:

Частота ШИМ зависит от различных факторов. При увеличении частоты увеличиваются потери на переключение, емкость и индуктивность нагрузки влияет на изменение формы сигнала. Поэтому в микромощных устройствах следует выбирать минимально возможную частоту ШИМ, а в схемах с емкостной или индуктивной нагрузкой выбирать частоту исходя из анализа схемы.

1. Управление электродвигателями

ШИМ применяется для управления двигателями в импульсном режиме. По характеристикам двигателя необходимо подобрать значение частоты ШИМ, чтобы обеспечить оптимальные характеристики электропривода. При выборе задающей частоты важным критерием являются акустические шумы, создаваемые двигателем при работе. Коллекторные двигатели могут создавать звуковой шум на частотах от 20 Гц до 4 кГц. Для исключения этого нежелательного эффекта нужно выбирать частоту выше 4 кГц. На таких частотах акустического шума уже не будет, так как механические части имеют более низкие резонансные частоты.

2. Светодиоды и устройства освещения

ШИМ часто используется для изменения яркости световых приборов. Эффект мерцания может быть заметен на частотах ниже 50 Гц, поэтому на практике частота ШИМ выбирается около 100 Гц или выше.

3. Формирование аналогового сигнала

Рисунок. 4. Формирование аналогового сигнала с помощью ШИМ и ФНЧ

Выход ШИМ может применяться для цифро-аналогового преобразования с помощью нескольких внешних элементов. Преобразование ШИМ-сигнала в аналоговый осуществляется на основе фильтра ФНЧ (рис. 18). Для исключения появления в выходном сигнале нежелательных гармоник необходимо, чтобы частота модуляции (FPWM) была намного выше, чем частота выходного сигнала (FBW):

FPWM =К x FBW,

причем, чем больше значение К, тем меньше гармоник.

Для расчета фильтра применяется следующая формула:

RC=1/(2πFBW)

Выбрав значение емкости С, вычисляют значение резистора R. Подавление частоты ШИМ в выходном сигнале определяется выражением:

-10 x log[1 + (2πFPWMRC)2] (дБ)

Если подавление недостаточное, то увеличивают коэффициент К, увеличивая тем самым частоту модуляции.

4. Управление яркостью светодиодов

Для изменения яркости светодиодов можно использовать ШИМ. Для этого на выход подключается светодиод через резистор, ограничивающий максимальный ток. Изменяя скважность импульсов с помощью регистра в широких пределах (00...FF), можно менять яркость свечения. Необходимо отметить, что частота ШИМ должна быть не менее 100 Гц для устранения мерцания.

2 Выбор элементной базы

2.1 Микросхема КР580ВИ53

Микросхема КР580ВИ53 относится к микропроцессорному комплекту серии КР580, который предназначен для построения широкого класса цифровых устройств, контроллеров, микроЭВМ и микропроцессорных систем различного назначения.

Большая функциональная насыщенность, достаточно высокое быстродействие и средняя потребляемая мощность обеспечивают этому комплекту наибольшую распространенность применения. Особенностью комплекта являются фиксированные разрядность (8 разрядов) и система команд (совместима с микроЭВМ СМ1800), что однозначно определяет структуру устройств, построенных на его основе. Микросхемы КР580ГФ24, КР580ВК28, КР580ВК38, КР580ИР82, КР580ИР83, КР580ВЛ86, КР580ВЛ87 комплекта выполнены по биполярной технологии ТТЛШ, остальные — по nМОП-технологии. Всё микросхемы, входящие в МПК КР580, предназначены для работы в диапазоне температур —10... + 70 °С.

Микросхема КР580ВИ53 представляет собой устройство, формирующее программно-управляемые временные задержки (таймер) и содержит три независимых идентичных канала: 0, 1, 2. Каждый канал может работать в одном из шести основных режимов (режим 0—режим 5), иметь двоичный или двоично-десятичный тип счета, задаваемый программно путем предварительной записи в регистр режима каждого канала управляющего слова. Структурная схема КР580ВИ53представлена на рисунке 5.


Рисунок 5

Рассмотрим назначение основных узлов.

Схема выбора канала формирует сигналы управления каналами 0, 1, 2 внутренними и внешними передачами данных, приемом управляющих слов. Буфер канала данных состоит из восьми двунаправленных формирователей, имеющих на выходе состояние «Выключено», и осуществляет сопряжение таймера с шиной данных МП. Через буфер канала осуществляется запись управляющего слова в регистры режима и параметров счета в счетчики каждого канала. Схемы каналов 0, 1, 2 идентичны и содержат регистры режима, схемы управления, схемы синхронизации и счетчики. Регистр режима предназначен только для записи информации. Он принимает и хранит управляющее слово, код которого задаст режим работы канала, определяет тип счета и последовательность загрузки данных в счетчик. Схема управления канала синхронизирует работу счетчика и в соответствии с запрограммированным режимом и работу капала с работой МП.

Схема синхронизации канала формирует серию внутренних тактовых импульсов определенной длительности, которая зависит от внешней частоты синхронизации CLK и определяется внутренними времязадающими цепями схемы. Максимальная частота внешних сигналов синхронизации CLK не более 2,6 МГц.

Счетчик канала представляет собой 16-разрядный счетчик с предустановкой, работающий на вычитание в двоичном или двоично-десятичном коде. Максимальное число при счете равно 216 при работе в двоичном коде или 104 при работе в двоично-десятичном коде. Счетчики каналов независимы друг от друга и могут иметь различные режимы работы и типы счета. Запуск счета в каждом канале, его останов и продолжение осуществляются по соответствующему сигналу GATE «Разрешение канала».

К-во Просмотров: 508
Бесплатно скачать Курсовая работа: Разработка устройства, предназначенного для формирования импульсных сигналов с заданным периодом и скважностью - ШИМ-регулятор