Курсовая работа: Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного

150

162

134

104

130

136

150

136

105

146

146

138

158

154

141

134

150

150

114

109

157

161

133

166

168

Здесь и далее для экономии времени и упрощения вычислительн6ой работы воспользуемся Matlab для проведения однофакторного дисперсионного анализа для сравнения средних арифметических значений выборок. Будем использовать функцию p = anova1(X) - функция позволяет провести однофакторный дисперсионный анализ для сравнения средних арифметических значений одной или нескольких выборок одинакового объема. Выборки определяются входным аргументом Х. Х задается как матрица с размерностью mxn, где m - число наблюдений в выборке (число строк Х), n - количество выборок (число столбцов матрицы Х). Выходным аргументом функции является уровень значимости p нулевой гипотезы. Нулевая гипотеза состоит в том, что все выборки в матрице Х взяты из одной генеральной совокупности или из разных генеральных совокупностей с равными средними арифметическими. p является вероятностью ошибки первого рода, или вероятностью необоснованно отвергнуть нулевую гипотезу. Если значение p0, то нулевая гипотеза может быть отвергнута, т.е. хотя бы одно среднее арифметическое отличается от остальных значений. Выбор критического уровня значимости pKP для условия принятия нулевой гипотезы

предоставлен исследователю. Здесь и далее примем pKP равным 0,05.

После выполнения вычислений мы получаем:

К-во Просмотров: 725
Бесплатно скачать Курсовая работа: Регрессионный анализ корелляции субъективного ВАШ и лабораторных признаков активности реактивного