Курсовая работа: Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса Башфорта
(2.1.7)
Отметим , что метод (2.1.6) – есть метод Адамса-Башфорта второго порядка , (2.1.7) – метод Адамса-Башфорта четвертого порядка .
Для стартования метода (2.1.7) необходимы сведения о четырех предыдущих точках . Соответственно данный метод требует вычисления стартующих данных . Воспользуемся для нахождения второй точки одношаговым методом Эйлера , который имеет вид :
Таким образом , подставляя начальные условия, мы находим вторую точку . Следует заметить , что степень точности совпадает со степенью точности остальных методов , что является существенным фактором в стартовании метода прогноза и коррекции .
Ввиду того , что стартовые методы имеют более низкий порядок , в начале приходится считать с меньшим шагом и с использованием большего промежутка времени . В данном случае метод Эйлера для дальнейшего интегрирования не оправдывает себя . Для этих целей воспользуемся трехшаговым методом прогноза и коррекции с переменным шагом .
Рассуждая также , как для метода Адамса-Башфорта , который излагается в работах : [1],[2],[3] , мы мы приходим к формулам :
Прогноз :
(2.1.8)
Коррекция :
(2.1.9)
где h - шаг интегрирования , изменяющийся на малом промежутке времени в соответствии с условиями Рунге :
,
где в свою очередь - малое конкретное значение , при невыполнении условия которого увеличивается шаг h=h*N а - малое конкретное значение , при невыполнении условия шаг соответственно уменьшается h=h/N , где N - некоторое целое число больше единицы .
Оптимально , для вычисления новой точки , с помощью метода прогноза и коррекции , используется формула :
(2.1.10)
Таким образом, мы воспользовались простым трех шаговым методом прогноза и коррекции , для стартования метода Адамса-Башфорта . Преимущества данного метода заключаются :в его высокой точности , авто подборе шага , что во много раз повышает точность самого метода Адамса-Башфорта , и делает его оптимальным для задач такого рода .
Метод Адамса-Башфорта использует уже посчитанные значения в точке Xk и в предыдущих точках . В принципе , при построении интерполяционного полинома , мы можем использовать и точки Xk+1,Xk+2,… . Простейший случай при этом состаит в использовании точек Xk+1,Xk,…,Xk-N
и построения интерполяционного полинома степени N+1 , удовлетворяющего условиям P(Xi)=fi , (I=k+1,k,…,k-N) . При этом возникает класс методов , известных как методы Адамса-Моултона . Если N=0 , то p – линейная функция , проходящая через точки (Xk,fk) и (Xk+1,f k+1) , и соответствующий метод :
(2.1.11)
является методом Адаиса-Моултона [2] , именно им мы воспользовались в формуле (2.1.9) – коррекции спрогнозированной точки в трех шаговом методе . Если N=2 , то p – кубический полином , построенный по точкам и соответствующий метод :
(2.1.12)
является методом Адамса-Моултона четвертого порядка . В силу того , что по сути fk+1 – неизвестная , то методы Адамса-Моултона (2.1.11),(2.1.12) называют неявными . В тоже время методы Адамса-Башфорта – называют явными .
Теперь воспользовавшись явной формулой (2.1.7) , и неявной формулой (2.1.12) , используя их совместно , мы приходим к методу Адамса-Башфорта четвертого порядка :
(2.1.13)
Стоит обратить внимание , что в целом этод метод является явным . Сначало по формуле Адамса-Башфорта вычисляется значение , являющееся “прогнозом” . Затем используется для вычисления приближенного значения , которое в свою очередь используется в формуле Адамса-Моултона . Таким образом формула Адамса-Моултона “корректирует” корректирует приближение , называемое формулой Адамса-Башфорта .