Курсовая работа: Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса Башфорта
Тексты программной оболочки PrandCo M version 2.41 приведены в приложении 4 .
5. ПРИМЕРЫ РАСЧЕТОВ
Для анализа достоверности получаемых результатов рассмотрим следующие примеры :
5.1.Решение одного дифференциального уравнения
Первым этапом анализа достоверности была проверка правильности решения одного дифференциального уравнения . Полученное численное решение сравнивается с аналитическим .
Пусть требуется решить уравнение :
при начальном условии y(0)=1 , 0<=x<=1 , и шаге интегрирования h=0.1 . Это линейное уравнение , имеющее следующее точное решение :
которое поможет нам сравнить точность численного решения для случая с постоянным шагом , т.к. точность решений с переменным шагом выше . Результаты расчета представлены в Таблице 1 .Как видно из таблицы, отличие между численными и аналитическими решениями удовлетворительное даже для такого большого шага , и не превышает 2% . Теперь решим этот же пример тем же методом , но с переменным шагом . Получаем любопытные зависимости точности от выбора шага , а также шага сходимости , - которые носят периодический характер . Результаты исследования приведены в таблице 2 . Как мы видим, погрешность резко уменьшается с использованием метода с переменным шагом , и показывает очень высокую точность решения для численных методов , не превышающею 1% .
Таблица 2
Таблица 2
Начальный шаг |
Максимальная погрешность |
Сведение к шагу |
0.1 |
1.683 % |
0.0250 |
0.01 |
1.163 % |
0.0100 |
0.001 |
0.744 % |
0.0040 |
0.0001 |
0.568 % |
0.0032 |
0.00001 |
0.451 % |
0.0025 |
К-во Просмотров: 836
Бесплатно скачать Курсовая работа: Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса Башфорта
|