Курсовая работа: Решение задач линейного программирования симплекс методом

Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (4), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

X1 X2 X3 X4 X5 X6 св. чл.
1 1/2 5/4 1/4 0 0 190/4
5 3 4 0 1 0 320
7 9 5 0 0 1 454
3500 3200 1500 0 0 0
X1 X2 X3 X4 X5 X6 св. чл.
1 1/2 5/4 1/4 0 0 190/4
0 1/2 -9/4 -5/4 1 0 165/2
0 11/2 -15/4 -7/4 0 1 243/2
0 -1450 2875 875 0 0

Итерация №1

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты

В качестве ведущего выберем столбец, соответствующий переменной x2 , так как наибольший коэффициент по модулю.

Вычислим значения Di по строкам как частное от деления и из них выберем наименьшее:

Следовательно, 3-ая строка является ведущей

Разрешающий элемент равен 5.5 и находится на пересечении ведущего столбца и ведущей строки

Формируем следующую часть симплексной таблицы.

Вместо переменной xв план 2 войдет переменная x2

Строка, соответствующая переменной x2 в плане 2, получена в результате деления всех элементов строки x6 плана 1 на разрешающий элемент РЭ=5.5

На месте разрешающего элемента в плане 2 получаем 1.

В остальных клетках столбца x2 плана 2 записываем нули.

Таким образом, в новом плане 2 заполнены строка x2 и столбец x2 .

Все остальные элементы нового плана 2, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (5.5), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

Конец итераций: найден оптимальный план


Окончательный вариант симплекс-таблицы:

X1 X2 X3 X4 X5 X6 св. чл.
1 0 159/100 41/100 0 -9/100 729/20
0 0 -191/100 -109/100 1 -9/100 1429/20
0 1 -15/22 -7/22 0 9/50 243/11
0 0 1886.36 413.64 0 263.64

Оптимальный план можно записать так:

x1 = 729/20=36.45

x5 =1429/20= 71.45

x2 =243/11= 22.09

F(X) = 3500*36.45 + 3200*22.09 = 198281.82

Программная реализация

unit Unit1;

К-во Просмотров: 722
Бесплатно скачать Курсовая работа: Решение задач линейного программирования симплекс методом