Курсовая работа: Решение задачи на нахождение оптимального пути методом ветвей и границ
Москва 2008г.
Содержание:
Постановка задачи. 3
1. Теоретическая часть. 4
1.1. Математическая постановка задачи коммивояжёра. 4
1.2.Метод ветвей и границ. 4
1.3. Алгоритм решения. 5
1.4. Схема решения задачи. 5
Практическая часть. 6
Заключение. 7
Список литературы: 8
Приложение 1. 9
Приложение 2. 11
Постановка задачи.
Фирма «Ветка Сакуры» занимается выращиванием и доставкой самых любимых в Японии растений, в частности, маленьких комнатных и садовых деревьев «бансай». Такие деревья заказывают только шесть магазинов города Москвы; все они расположены в разных районах города. Доставку осуществляет только один водитель на единственной машине. Заказы поступают один раз в две недели от каждого магазина. Водитель должен завести деревья во все шесть магазинов за один день и вернуться обратно на фирму, чтобы отдать соответствующие документы в бухгалтерию, а также, чтобы поставить машину в гараж. Начальной точкой отправления машины также является фирма, т.к. машина, склад и бухгалтерия находятся в одном месте – на фирме.
В последнее время администрация фирмы стала замечать, что вследствие неоптимального пути, по которому ездил водитель в магазины, расходы фирмы сильно увеличились. Это объясняется тем, что водитель особо не задумывается о маршруте поставок, а может быть, даже и удлиняет его, т.к. у него почасовая оплата, а бензин оплачивается фирмой. Также, из-за того, что часто водителем был выбран неоптимальный маршрут доставки деревьев, а администрация не обращала на эту часть своей деятельности никакого внимания, заказы иногда не доставлялись за один день, и фирма была вынуждена платить неустойки, что также уменьшало её прибыль.
В связи с этим администрация фирмы решила заняться этим вопросом и разработала оптимальный путь доставки на основе имеющихся данных о стоимости пути в каждый из магазинов (стоимость включает затраты на оплату деятельности водителя и на бензин).
1. Теоретическая часть.
Коммивояжёр, находясь в одном из городов должен посетить ещё n-1 город. При этом должны выполнятся следующие условия:
•каждый город он должен посетить только один раз;
•вернутся туда же, откуда выехал;
•затраты на поездку должны быть минимальными.
1.1. Математическая постановка задачи коммивояжёра
Дан ориентированный граф G, имеющий n вершин и дуг. Необходимо найти длину кратчайшего замкнутого маршрута, содержащего каждую вершину только один раз.
1.2.Метод ветвей и границ.
Нашу задачу будем решать методом ветвей и границ. Решение будем изображать на дереве. Дерево – ориентированный граф без циклов.
Метод ветвей и границ - один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов. Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. То есть способ построения дерева возможных вариантов, и способ оценки верхней границы целевой функции. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.
1.3. Алгоритм решения
Алгоритм содержит две основные процедуры:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--