Курсовая работа: Ряды и интеграл Фурье
Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:
(n =1,2, . . .)
Задача о колебании струны
Пусть в состоянии равновесия натянута струна длинной l с концами x= 0 и x =l . Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.
При сделанных выше допущениях можно показать, что функция u (x,t ) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению
(1) , где а - положительное число.
Наша з а д а ч а - найти функцию u (x,t ) , график которой дает форму струны в любой момент времени t , т. е. найти решение уравнения (1) при граничных:
(2)
и начальных условиях:
(3)
Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u (x ,t )0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u (x,t )=X (x )T (t ), (4) , где , .
Подстановка выражения (4) в уравнение (1) дает:
Из которого наша задача сводится к отысканию решений уравнений:
Используя это условие X (0)=0, X (l )=0, докажем, что отрицательное число, разобрав все случаи.
a) Пусть Тогда X ”=0 и его общее решение запишется так:
откуда и ,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль.
б) Пусть . Тогда решив уравнение
получим , и, подчинив, найдем, что
в) Если то
Уравнения имеют корни :
получим:
где -произвольные постоянные. Из начального условия найдем:
откуда , т. е.
(n =1,2,...)
(n =1,2,...).
Учитывая это, можно записать:
(n=1,2,...).
и, следовательно
, (n =1,2,...),
но так как A и B разные для различных значений n то имеем
, (n =1,2,...),
где и произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).
Итак, подчиним функцию u (x,t ) начальным условиям, т. е. подберем и так , чтобы выполнялись условия
Эти равенства являются соответственно разложениями функций и на отрезки [0, l ] в ряд Фурье по синусам. ( Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой
где
(n =1,2,...)
Интеграл Фурье
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f (x ) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1) абсолютной интегрируемости на
(т.е. интеграл сходится)