Курсовая работа: Ряды и интеграл Фурье
( так как ).
Отдельно рассмотрим случай когда n=1:
.
Подставим найденные коэффициенты в получим:
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника ,
2-ая гармоника ,
3-ая гармоника ,
4-ая гармоника ,
5-ая гармоника ,
и общий график F(x), сумма выше перечисленных гармоник. и сами гармоники.
Запишем комплексную форму полученного ряда
Для рассматриваемого ряда получаем коэффициенты (см. теорию)
,
но при не существует, поэтому рассмотрим случай когда n =+1 :
(т.к. см. разложение выше)
и случай когда n =-1:
(т.к. )
И вообще комплексная форма:
или
или