Курсовая работа: Роль нанотехнологии в создании более эффективных преобразователей энергии
Мельчайшие каналы, создаваемые на субстрате, всегда ассоциировались с «лабораториями на чипе». Однако, наноразмерная геометрия может использоваться и иначе — для выработки электричества.
Учёные из Нидерландов продемонстрировали эффективность преобразования энергии с КПД 3.25% при течении солевого раствора через канал 75 нм глубиной, 50 мкм шириной и 4.5 мм длиной.
В перспективе группа из Технологического Университета Дельфта рассчитывает добиться эффективности 10%. Исследователи считают, что этот метод может обеспечить микро- и нанофлюидные устройства «бортовыми» источниками энергии.
Метод электрокинетической генерации электроэнергии основан на разности давлений вдоль наноканала, прокачивающей водный раствор KCl или LiCl от одного конца к другому. Движение жидкости индуцирует ток, пропускаемый через внешнее сопротивление, совершая, таким образом, работу.
Возле стенки канала, на поверхности раздела жидкость-субстрат, зарядовая нейтральность жидкости нарушается, что и делает возможной выработку электрической энергии. А поскольку наноразмерные каналы имеют высокое отношение поверхности к объёму, в них этот эффект особенно силён. Сама идея получения электроэнергии с помощью жидкости, текущей через узкий канал, не нова, но теперь достижения технологий изготовления нанообъектов позволяют создавать и испытывать реальные устройства.
Учёные наносили каналы непосредственно на поверхность плавленого кварца. Как оказалось, плотность поверхностного заряда этого материала практически оптимальна для таких экспериментов. Однако, дальнейшее повышение эффективности метода требует поисков материала или покрытия с такой же плотностью поверхностного заряда, но меньшей штерновской проводимостью — за счёт этого эффекта сам материал действует, как параллельно включённый проводник, через который идёт утечка электрической энергии.
6. Побит рекорд эффективности пластиковых солнечных элементов
В Центре Нанотехнологий и Молекулярных Материалов Университета Уейк Форест (Wake Forest University, Center for Nanotechnology and Molecular Materials) достигнуты значительные успехи в области возобновляемы источников энергии.
Исследователи Центра объявили о создании пластиковых солнечных элементов с эффективностью более 6%. Такая высокая эффективность была достигнута за счёт внедрения нановолокон в светопоглощающий пластик, аналогично жилам в листьях растений. Такой подход позволяет создавать устройства с более толстым светопоглощающим слоем, улавливающие больше солнечного света.
Эффективные пластиковые солнечные батареи важны для создания недорогих и лёгких элементы питания — особенно в сравнении с традиционными кремниевыми солнечными батареями, которые обладают большим весом и размерами. Благодаря гибкости и простоте в обращении, пластиковые солнечные батареи могут использоваться в качестве покрытий на домах и автомобилях. А поскольку такие элементы намного легче обычных, отпадает необходимость в прочных опорных конструкциях.
Современные кремниевые элементы достигают эффективности преобразования света в электрическую энергию порядка 12%. Максимальная эффективность пластиковых солнечных элементов не превышала 3%, пока в 2005 году директор Центра Дэвид Кэрролл (David Carroll) и его группа не объявили о создании устройств с эффективностью почти 5%, а теперь, спустя чуть более года, они превзошли отметку 6%. Таким образом за два года им удалось более чем вдвое повысить эффективность элементов. Исследователи ожидают добиться ещё больших успехов в течение следующих двух лет, что наконец сделает пластиковые солнечные элементы лидерами среди солнечных батарей. Для коммерческой рентабельности эффективность солнечных элементов должна быть не ниже 8%; исследователи из Уейк Форест ожидают достигнуть 10% отметки в следующем году.
7. Создан нанодвигатель с фотонным питанием
Создан нанодвигатель с фотонным питанием Ученые из университетов Болоньи и Калифорнии создали первый молекулярный двигатель, работающий от солнечного света.
Нано