Курсовая работа: Розробка алгоритму операційного автомату, синтез керуючого автомату з жорсткою логікою типу Мілі
Множення може проводитись в прямому, оберненому та доповняльному кодах. Знак результату операції множення можна визначати окремо. Для цього використовується операція XOR над знаковими розрядами співмножників відповідно.
При виконанні множення двох операндів однакової розрядності розрядність результату збільшується вдвічі, порівняно з розрядністю множників. При виконанні множення операндів, представлених в прямому коді, їх модулі множаться як цілі двійкові числа без знаків, або як дробові числа без знаків, оскільки процедура множення в обох випадках та ж сама. При виконанні множення операндів, представлених в оберненому коді, всі розряди від'ємних чисел потрібно інвертувати, а далі проводити множення так само, як над даними, представленими в прямому коді. Разом з тим, потрібно зауважити, що існують методи прямого множення операндів, представлених в обернених кодах.
1.1.1 Основні методи множення
Методи множення чисел у двійковій системі числення можна класифікувати таким чином:
За формою подання чисел
методи множення чисел з фіксованою комою;
методи множення чисел з плаваючою комою.
За швидкодією
методи простого множення
методи прискореного множення
За видом використаного суматора:
методи множення на суматорі прямого коду;
методи множення на суматорі доповняльного коду;
методи множення на суматорі оберненого коду (рідко використовується ).
За аналізом розрядів множника:
множення з молодших розрядів;
множення зі старших розрядів;
Усі перераховані методи можуть накладатися один на одного, що дає змогу вибрати потрібний метод множення двійкових чисел з урахуванням вимог до швидкості виконання операції та до використання апаратних затрат на реалізацію алгоритму.
Виходячи з вищевикладеного можна виділити чотири варіанти схем машинного множення:
Метод 1. Припустимо В-множене (В>0), A-множник (А>0) С-добуток. Тоді у випадку зображення чисел у формі з фіксованою комою отримуємо
А = а1а2…аn ;
B = b1b2…bn = b12-1 + b22-2 + … + bn2-n;
Звідси:
С = АВ = (0а1а2…аn)(b12-1 + … + bn2-n) = = (2-10,a1a2…an)b1 (1.1) + (2-10,a1a2…an)b2 + … + (2-n0,a1a2…an)bn .
Множник 2-n означає зсув на n розрядів вправо числа яке заключене в дужки тобто в даному випадку зсувається вправо множене і множення починається з старших розрядів.
Структурна схема пристрою що реалізує цей метод наведена на рис. 1а.
Метод 2. Множник B = 0b1b2…bn перетворюється по схемі Горнера
B = (…((bn2-1 + bn-1)2-1 + bn-2)2-1 + … + b2)2-1 + b1)2-1
Тоді:
C = AB = (…((bn0,a1a2…an)2-1 + bn-10,a1a2…an)2-1 … (1.2) …+b10,a1a2…an)2-1