Курсовая работа: Розробка програми мовою програмування С++ по пошуку коренів нелінійних рівнянь
Наведемо достатні умови збіжності методу простої ітерації.
Теорема 1. Нехай для вибраного початкового наближення x0 на проміжку
(10)
функція j(x) задовольняє умові Ліпшиця
(11)
де 0<q<1, і виконується нерівність
. (12)
Тоді рівняння (7) має на проміжку S єдиний корінь , до якого збігається послідовність (9), причому швидкість збіжності визначається нерівністю
. (13)
Зауваження: якщо функція j(x) має на проміжку S неперервну похідну , яка задовольняє умові
, (14)
то функція j(x) буде задовольняти умові (11) теореми 1.
З (13) можна отримати оцінку кількості ітерацій. які потрібно провести для знаходження розв’язку задачі (7) з наперед заданою точністю e:
. (15)
Наведемо ще одну оцінку. що характеризує збіжність методу простої ітерації:
. (16)
Метод релаксації
Для збіжності ітераційного процесу (9) суттєве значення має вибір функції j(x). Зокрема, якщо в (8) вибрати , то отримаємо метод релаксації.
, (17)
який збігається при
. (18)
Якщо в деякому околі кореня виконуються умови
, (19)
то метод релаксації збігаються при . Збіжність буде найкращою при
. (20)
При такому виборі t для похибки буде мати місце оцінка
, (21)
де .
Кількість ітерацій, які потрібно провести для знаходження розв’язку з точністю e визначається нерівністю
. (22)