Курсовая работа: Сетевые графики
Получили, что минимальное время, требуемое для выполнения проекта равно Т=РВЫП(11), Т=71. Теперь найдем посредством алгоритма 2 значение времени наиболее позднего начала и выполнения работ. Работу алгоритма изложим в виде последовательности выполняемых шагов.
Шаг n |
Действия выполняемые шагом |
1 |
Объявление значений ПВЫП(v), vÎV равным Т. Текущая вершина vk =11. |
2 |
ПНАЧ(11)=ПВЫП(11)-t(11) {ПНАЧ(11) стало равным 71}. |
3 |
ПВЫП(9)=МИН{ПВЫП(9),ПНАЧ(11)}{ПВЫП(9) стало равным 71} ПВЫП(10)=МИН{ПВЫП(10),ПНАЧ(11)}{ПВЫП(10) стало равным 71} |
4 |
Текущая вершина vk =10. |
5 |
Переход в Шаг 2. |
2 |
ПНАЧ(10)=ПВЫП(10)-t(10) {ПНАЧ(10) стало равным 68} |
3 |
ПВЫП(7)=МИН{ПВЫП(7),ПНАЧ(10)}{ПВЫП(7) стало равным 68} |
4 |
Текущая вершина vk =9. |
5 |
Переход в Шаг 2. |
2 |
ПНАЧ(9)=ПВЫП(9)-t(9) {ПНАЧ(9) стало равным 68} |
3 |
ПВЫП(8)=МИН{ПВЫП(8),ПНАЧ(9)}{ПВЫП(8) стало равным 68} |
4 |
Текущая вершина vk =8. |
К-во Просмотров: 2106
Бесплатно скачать Курсовая работа: Сетевые графики
|