Курсовая работа: Синтез и анализ ХТС в производстве ацетона

Спустя 20 лет, в 1950 г., когда в СССР процесс получения фенола и ацетона через гидроперекись изопропилбензола уже был осуществлен в промышленности, появилась работа Караша с сотрудниками по изучению механизма реакции кислотного разложения гидроперекиси изопропилбензола.

Авторы отмечают, что реак­ция разложения чрезвычайно экзотермична и протекает с за­метной скоростью даже при –80 С С. Для того чтобы свести к минимуму нежелательные побочные процессы, разложение про­водилось в среде уксусной кислоты (в которой гидроперекись стабильна при комнатной температуре) в присутствии 0,1 мол. % хлорной кислоты. В этих условиях гидроперекись изопропилбензола количественно разлагалась на фенол и аце­тон.

Для объяснения этой реакции Караш предложил цепной механизм:

+ A


С6 Н5 (СН3 )2 СООН → [С6 Н5 (СН3 )2 СО]+ + (АОН) (а)

6 Н6 (СН3 )2 СО]+ → [Св Н6 -О-(СН3 )2 С]+ (б)

С6 Н5 (СН3 )2 СООН + [С6 Н5 –О– (СН3 )2 С]+

→ [Св Н6 (СН3 )2 СО]+ + С6 Н5 ОН + (СН3 )2 СО (в)

В описанной схеме «А» — сильная кислота по теории Льюи­са. В результате бимолекулярной реакции гидроперекиси с кислотой образуется осколок молекулы, несущий положитель­ный заряд на кислородном атоме, который перегруппировы­вается затем в катион, несущий положительный заряд на угле­родном атоме (ион карбония). Этот ион, взаимодействуя с молекулой гидроперекиси, превращается в фенол и ацетон, ре­генерируя кислородный катион, который в свою очередь пере­группировывается в ион карбония и т. д.

Тот факт, что только сильные кислоты могут быть причиной гетеролитического распада гидроперекиси изопропилбензола, авторы доказывают следующим образом. Хлористый водород, растворенный в уксусной кислоте, не является сильной кислотой и в этом случае не пригоден для разложения гидроперекиси, тогда как в других условиях следы хлористого водорода вызы­вают бурный ее распад на фенол и ацетон. С другой стороны, хлорное железо, которое в спиртовом растворе представляет собой слабую кислоту, в данных условиях не разлагает гидро­перекись. В то же время раствор хлорного железа в бензоле является сильной кислотой и быстро превращает гидроперекись изопропилбензола в фенол и ацетон. Аналогичные результаты были получены с другими растворителями (диоксан, бензол) и кислотами (растворы фтористого бора, хлористого алюминия, серная кислота). Это указывает на отсутствие специфического влияния растворителя или аниона.

Караш с сотрудниками наблюдали также, что присутствие в гидро­перекиси диметилфенилкарбинола вызывает в условиях кислот­ного разложения образование димера α-метилстирола наряду с заметно уменьшающимися количествами фенола и ацетона. Если в реакцию вступали относительно большие количества этого карбинола (2 – 3 моль на 1 моль гидроперекиси), обра­зование фенола и ацетона полностью прекращалось; основными продуктами при этом были димер а-метилстирола и перекись водорода.

На основании описанного эксперимента Караш. сделал вы­вод о том, что разложение гидроперекиси изопропилбензола может по существу измениться в присутствии вещества, способ­ного конкурировать с гидроперекисью по отношению к кисло­те «А». В данном случае, очевидно, диметилфенилкарбинол является более сильным основанием, чем гидроперекись изо­пропилбензола; следовательно, реакция (а) не может проте­кать.

Сравнительно недавно Хоку с сотрудниками удалось синтезировать бензоильное производное гидроперекиси изопропилбензола, ко­торое безуспешно пытались получить Виланд и Мейер для гид­роперекиси трифенилметана. Детально изучив механизм пре­вращений гидроперекиси изопропилбензола, Хок предложил схему распада, в основе которой лежит перегруппировка иона оксония в ион карбония.

При рассмотрении реакции кислотного разложения гидро­перекиси изопропилбензола с точки зрения, механизма, пред­ложенного Карашем, становится очевидной аналогия с бекмановской перегруппировкой:

Несмотря на то, что схема, предложенная Карашем, наибо­лее полно объясняет процесс кислотного разложения гидропере­кисей, следует отметить, что точный механизм первичного гетеролитического распада гидроперекисей в деталях не из­вестен и трудно сказать что-либо определенное относительно продолжительности существования предполагаемого кислород­ного катиона и того, является ли он в действительности «сво­бодным».

Таким образом можно сделать вывод о том, что процесс кислотного разложения гидроперекиси изопропилбензола является оптимальным процессом получения ацетона.

Рассмотрим технические решения по созданию данного производства.

4.2 Определение технологической топологии ХТС

Вследствие того, что реакция кислотного разложения гидро­перекиси изопропилбензола нашла большое практическое при­менение в производстве фенола и ацетона, в научно-технической литературе с каждым годом появляются новые сообщения отно­сительно различных способов осуществления данного процесса. В основном вся литература по этому вопросу представлена в виде патентов или коротких сообщений рекламного характера. В то же время опубликовано очень мало сведений о конкретном аппаратурно-технологическом оформлении процесса кислотного разложения гидроперекиси на действующих или проектируемых промышленных установках.

В большинстве случаев в качестве катализатора рекомен­дуют серную кислоту, концентрированную или разбавлен­ную. При этом, как правило, концентрированная кислота применяется в каталитических количествах (0,1—2% от веса гидроперекиси), а разбавленная кислота берется в большом избытке. В ряде патентов предлагают вместо серной кислоты использовать хлорную и фосфорную кислоты, органические сульфокислоты, сульфированную феноло-формальдегидную смо­лу. Рекомендуют проводить разложение гидроперекиси изо­пропилбензола сернистым ангидридом в аппарате пленочного типа. Сообщают о возможности разложения гидроперекиси сульфидами щелочных или щелочноземельных металлов и их смесей, а также в присутствии таких катализаторов, как фос­фор, сера, селен и мышьяк при 108—110 °С в вакууме. В качестве катализаторов для разложения концентрированной или разбавленной гидроперекиси предлагают безводные сульфаты меди, кальция, бериллия, магния, стронция и бария. Разло­жение гидроперекиси можно также осуществить на пористом материале, пропитанном серной кислотой, с помощью катали­заторов алкилирования (А1С13 , FеС13 , активные глины) или на ионообменных смолах. Несмотря на множество предложен­ных катализаторов, в промышленности России и за рубежом применяют только серную кислоту, и нет никаких сведений о использовании других катализаторов.

Вследствие большого теплового эффекта реакции разложения гидроперекиси на фенол и ацетон (2×103 кДж/кг = 486 ккал/кг) необходимо отводить выделяющееся тепло в качестве среды, воспринимающей тепло, применяют изопропилбензол, фенол, ацетон или серную кислоту.

В значительной части патентов указывается на возможность кислотного разложения неконцентрированной гидроперекиси изопропилбензола в том виде, в каком она получается сразу после окисления, т. е. состоящей примерно из 25% гидропере­киси и 70—75% изопропилбензола. Разложение такой гидро­перекиси обычно осуществляют с помощью относительно боль­шого количества разбавленной серной кислоты — в гетерогенной среде. Конструкция реактора не описывается, однако указано, что смесь в реакторе должна интенсивно перемеши­ваться для обеспечения необходимой скорости реакции. Эмуль­сия, образовавшаяся в реакторе, поступает в сепаратор, где происходит разделение фаз. Верхний, органический слой на­правляют сначала на нейтрализацию, затем на ректификацию для выделения индивидуальных продуктов, а слой отработанной серной кислоты вновь возвращают в реактор.

Для такого гетерогенного процесса рекомендуют применять 10—75%-ную серную кислоту. Выбор необходимой концентра­ции серной кислоты зависит от температуры реакции. Так, для того чтобы обеспечить достаточную скорость реакции при 50—60 °С, необходима 60—70%-ная серная кислота. В одном из патентов предлагают проводить процесс с использованием 44%-ной серной кислоты.

В первоначальном варианте гетерогенного метода разло­жения разбавленная (10%-ная) серная кислота и гидропере­кись энергично смешивались в реакторе. Затем после отстаи­вания и разделения органический и водный слои подвергали раздельной обработке для выделения целевых продуктов. Не­достатки этого метода: влияние эффективности перемешивания на скорость реакции, корродирующее действие разбавленной серной кислоты, сложность системы выделения целевых продук­тов, вызванная тем, что фенол и ацетон растворимы в органи­ческих и неорганических фазах. Серьезным недостатком являет­ся также необходимость удаления большого количества сточных вод, содержащих фенол. Гетерогенный процесс кислотного раз­ложения гидроперекиси изопропилбензола, по имеющимся сведениям, был реализован в промышленности только на первом зарубежном заводе по производству фенола и ацетона, введенном в действие в Монреале (Канада) в 1953 г.

В дальнейшем все большее применение стал находить гомо­генный процесс кислотного разложения, заключающийся в том, что кислота применяется в таких небольших количествах, кото­рые полностью растворимы в реакционной смеси и не образуют второго слоя.

Так, в кратком описании завода по производству фенола и ацетона в Пон-де-Кле (Франция) указывается, что гидропере­кись выделяется в концентрированном виде путем вакуум-рек­тификации продуктов, полученных в результате окисления изо-протшлбензола. Здесь же сообщается, что при современном состоянии техники такой метод концентрирования гидропере­киси не вызывает затруднений. Разложению на фенол и ацетон подвергается уже концентрированная гидроперекись. В сообщении о пуске в начале 1960 г. завода по получению фенола и ацетона в Гренжмаутсе (Англия) говорится, что концентрированная гидропере­кись разлагается на фенол и ацетон в присутствии серной кис­лоты. Процесс разложения протекает настолько быстро, что в любой момент количество гидроперекиси в реакторе незначи­тельно.

Для осуществления реакции разложения в гомогенной среде было разработано несколько методов, согласно которым один из основных продуктов реакции возвращают в аппарат на раз­ложение в количестве, достаточном для гомогенизации реак­ционной массы.

Применение фенола в качестве гомогенизатора было осу­ществлено рядом французских производителей. В данных процессах в реакторе создается пленка из фенола. Для этого гидроперекись изопропилбензола, серную кислоту, а также дополнительное количество фенола подают в реактор непрерывно.

К-во Просмотров: 377
Бесплатно скачать Курсовая работа: Синтез и анализ ХТС в производстве ацетона