Курсовая работа: Синтез и анализ логической схемы при кубическом задании булевой функции

Министерство образования Российской Федерации

Томский политехнический университет

Факультет автоматики и вычислительной техники

Кафедра вычислительной

техники

Курсовая работа

по дисциплине “Теория автоматов”

на тему: «Синтез и анализ логической схемы при кубическом задании булевой функции»

Томск 2009


СОДЕРЖАНИЕ

Введение

1. Нахождение минимального покрытия

2. Построение факторизованного покрытия

3. Составление логической схемы на основе данного базиса логических элементов

4. Нахождение по пи-алгоритму Рота единичного покрытия

5. Синтез контролирующего теста. Контроль схемы тестом

Заключение

Литература


ВВЕДЕНИЕ

Аппарат алгебры логики широко применяется в теории ЦВМ, в частности для решения задач анализа и синтеза схем. При решении задачи синтеза исходное логическое выражение, описывающее некоторую логическую функцию, преобразуется и упрощается так, чтобы каждый член полученного эквивалентного логического выражения мог быть представлен простой схемой. Таким образом, при синтезе вычислительных и управляющих схем составляется математическое описание задачи в виде формул алгебры логики. Затем производится минимизация исходной формулы и из числа эквивалентных логических схем выбирается та, которая допускает наиболее простую реализацию.

В данной курсовой работе стоит задача синтеза схемы, реализующей функцию, заданную кубическим комплексом к(f). В табл. 1 приведено исходное покрытие из 8 кубов. Логическую схему следует построить в универсальном базисе элементов ИЛИ-НЕ, который характеризуется коэффициентом объединения по входу к(вх)=4 и коэффициентом разветвления по выходу к(р)=2. Стоимость покрытия равна 48.

Таблица 1

Обозначение куба Покрытие Размерность куба
a 1011X10 6
b 1X1XX11 4
c 1011X11 6
d XX1X1X0 3
e 0X11111 6
f 00X0XX0 4
g 0X00101 6
h 10X00X0 5

Порядок выполнения работы можно определить следующим образом:

1). Нахождение минимального покрытия;

2). Построение факторизованного покрытия;

3). Составление логической схемы на основе данного базиса логических элементов;

4). Нахождение по пи-алгоритму Рота единичного покрытия;

5). Построение контролирующего теста;

6). Проверка логической схемы контролирующим тестом.


1.НАХОЖДЕНИЕ МИНИМАЛЬНОГО ПОКРЫТИЯ

В первую очередь необходимо найти минимальное в смысле Кванта покрытие. Минимальное покрытие булевой функции ищется в два этапа:

1).получение минимального множества Z простых импликант;

2).выделение L-экстремалей на множестве Z.

Для выполнения этих этапов используются операции *-произведения, #-вычитания кубов.

При выполнении операции *-произведения одного куба на другой получается новый куб, противоположные грани которого лежат в исходных кубах. Этот новый куб может стать простой импликантой исходного покрытия. Надо иметь в виду, что куб является простой импликантой исходного покрытия, если он не составляет грань никакого другого комплекса К или того куба, который получился при произведении в процессе нахождения простых импликант. Это означает, что простые импликанты при *-произведении не дают новых кубов, не входящих в предыдущие кубы.

При нахождении простых импликант выполняются все попарные произведения с учетом того, что произведение куба самого на себя приводит к кубу, участвующему в произведении; что произведение первого куба на второй равно произведению второго куба на первый.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 453
Бесплатно скачать Курсовая работа: Синтез и анализ логической схемы при кубическом задании булевой функции