Курсовая работа: Синтез и построение системы управления динамическими объектами

Рисунок 1 - Схема динамического процесса в переменных состояния


1.2 Представление схемы переменных состояний в форме Коши

Представим систему дифференциальных уравнений в векторно-матричной форме.

Z′ (t) = A*Z (t) +B*U (t), (1.3)

где матрица А - динамическая матрица объекта управления, которая характеризует динамику объекта;

Z (t) - вектор фазового состояния;

В - матрица управляющих (возмущающих) объекта, которая характеризует степень возмущения (управления);

U (t) - вектор возмущения.

Для нахождения динамической матрицы, вектора состояния, матрицы управляющих объекта, вектора возмущений введем некоторую переменную Z (t), и воспользуемся преобразованием Коши для системы дифференциальных уравнений (1.1):

, (1.4)

тогда система (1.2) примет вид:

. (1.5)

Перейдем от системы уравнений (1.5) к векторно-матричной форме:

. (1.6)

Таким образом, выражение (1.3) описывает поведение объекта управления в переменных в параметрическом и фазовом пространствах.

1.3 Нахождение передаточных функций звеньев системы управления

Для того чтобы найти передаточные функции системы запишем исходную систему в операторной форме

(1.7)

и разрешим её относительно реакций динамического процесса у1 и у2

, (1.8)

откуда находим для первого уравнения

, (1.9)

или ,

где ; ; ;

для второго уравнения

(1.20)

или ,

где ; .

Подставляя значения коэффициентов находим параметры звеньев системы

k1 = 0,5; k2 = 0,42;

К-во Просмотров: 233
Бесплатно скачать Курсовая работа: Синтез и построение системы управления динамическими объектами