Курсовая работа: Синтез и построение системы управления динамическими объектами
Рисунок 1 - Схема динамического процесса в переменных состояния
1.2 Представление схемы переменных состояний в форме Коши
Представим систему дифференциальных уравнений в векторно-матричной форме.
Z′ (t) = A*Z (t) +B*U (t), (1.3)
где матрица А - динамическая матрица объекта управления, которая характеризует динамику объекта;
Z (t) - вектор фазового состояния;
В - матрица управляющих (возмущающих) объекта, которая характеризует степень возмущения (управления);
U (t) - вектор возмущения.
Для нахождения динамической матрицы, вектора состояния, матрицы управляющих объекта, вектора возмущений введем некоторую переменную Z (t), и воспользуемся преобразованием Коши для системы дифференциальных уравнений (1.1):
, (1.4)
тогда система (1.2) примет вид:
. (1.5)
Перейдем от системы уравнений (1.5) к векторно-матричной форме:
. (1.6)
Таким образом, выражение (1.3) описывает поведение объекта управления в переменных в параметрическом и фазовом пространствах.
1.3 Нахождение передаточных функций звеньев системы управления
Для того чтобы найти передаточные функции системы запишем исходную систему в операторной форме
(1.7)
и разрешим её относительно реакций динамического процесса у1 и у2
, (1.8)
откуда находим для первого уравнения
, (1.9)
или ,
где ; ; ;
для второго уравнения
(1.20)
или ,
где ; .
Подставляя значения коэффициентов находим параметры звеньев системы
k1 = 0,5; k2 = 0,42;